精英家教网 > 初中数学 > 题目详情

经过点(2,-3)的双曲线是

[  ]

A.y=-

B.y=

C.y=

D.y=-

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,一底角为60°的等腰梯形ABCD的下底AB在x轴的正半轴上,A为坐标原点,点B的坐标为(m,0),对角线BD平分∠ABC,一动点P在BD上以每秒一个单位长度的速度由B→D运动(点P不与B,D重合).过P作PE⊥BD交AB于精英家教网点E,交线段BC(或CD)于点F.
(1)用含m的代数式表示线段AD的长是
 

(2)当直线PE经过点C时,它的解析式为y=
3
x-2
3
,求m的值;
(3)在上述结论下,设动点P运动了t秒时,△AEF的面积为S,求S与t的函数关系式;并写出t为何值时,S取得最大值,最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

附加题:已知二次函数y=ax2+bx+c的图象G和x轴有且只有一个交点A,与y轴的交点为B(0,4),且ac=b.
(1)求该二次函数的解析表达式;
(2)将一次函数y=-3x的图象作适当平移,使它经过点A,记所得的图象为L,图象L与G的另一个交点为C,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,二次函数y=ax2-2ax-3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.
(1)求顶点D的坐标(用含a的代数式表示);
(2)若以AD为直径的圆经过点C.
①求抛物线的函数关系式;
②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;
③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,半径为5的⊙P经过原点O,交x的正半轴于点A(2a,0),交y轴的正半轴于点C,经过点P且与x垂直的直线交两弧及圆于点B、D、E,弧OBA与弧ODA关于x轴对称,以点D为顶点且过C点的抛物线交⊙P于另一点F.
(1)当a=3时
①填空:D点的坐标为
 
;E点的坐标为
 
;C点的坐标为
 

②求出此时抛物线的函数关系式及F点的坐标;
③除C点外,直线BC与②中的抛物线是否存在其它公共点?若存在,求其它公共点的坐标;若不存在,请说明理由;
(2)是否存在实数a,使得以D、C、E、F为顶点的四边形组成菱形?若存在,求a的值;若不存在,请说明理精英家教网由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宁夏)如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=
kx
(x<0)
的图象经过点C,则k的值为
-6
-6

查看答案和解析>>

同步练习册答案