【题目】如图,在△ABC中,∠A=20°,CD是∠BCA的平分线,△CDA中,DE是CA边上的高,又有∠EDA=∠CDB,求∠B的大小.
【答案】∠B=60°.
【解析】试题分析:∠A=20°,DE是CA边上的高,所以∠EDA=∠CDB=90°-20°=70°,根据外角的性质得∠CDB=∠A+∠DCE=70°,所以∠DCE=∠BCD=50°,所以∠B=180°-∠BCD-∠CDB=60°.
∵DE是CA边上的高,
∴∠DEA=∠DEC=90°.
∵∠A=20°,
∴∠EDA=90°-20°=70°.
∵∠EDA=∠CDB,
∴∠CDE=180°-70°×2=40°.
在Rt△CDE中,∠DCE=90°-40°=50°.
∵CD是∠BCA的平分线,
∴∠BCA=2∠DCE=2×50°=100°.
∴∠B=180°-∠BCA-∠A=60°.
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E是AD上一点,F是BA延长线上的一点,AF=AE,.
(1)求证:△ABE≌△ADF
(2)线段BE与DF有什么关系?证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知整数a0,a1,a2,a3,a4,…,满足下列条件:a0=0,a1=﹣|a0+1|,a2=﹣|a1+2|,a3=﹣|a2+3|,…,以此类推,a2019的值是( )
A. ﹣1009B. ﹣1010C. ﹣2018D. ﹣2020
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC外,若∠2=18°,则∠1的度数为( )
A. 50°B. 98°C. 75°D. 80°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】嘉淇准备完成题目:化简:,发现系数“”印刷不清楚.
(1)他把“”猜成3,请你化简:(3x2+6x+8)–(6x+5x2+2);
(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.
(1)∠1与∠2有什么关系,为什么?
(2)BE与DF有什么关系?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】体育文化用品商店购进篮球和排球共20个,进价和售价如下表,全部销售完后共获利润260元.
篮球 | 排球 | |
进价(元/个) | 80 | 50 |
售价(元/个) | 95 | 60 |
求:(1)购进篮球和排球各多少个?
(2)销售6个排球的利润与销售几个篮球的利润相等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=640,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;∠A2BC和∠A2CD的平分线交于点A3,则∠A5= ______ .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com