精英家教网 > 初中数学 > 题目详情

某地区冬季干旱,康平社区每天需从外地调运饮用水60吨.有关部门紧急部署,从甲、乙两水厂调运饮用水到供水点,甲厂每天最多可调出40吨,乙厂每天最多可调出45吨.从两水厂运水到康平社区供水点的路程和运费如下表:
到康平社区供水点的路程(千米)运费(元/吨•千米)
甲厂204
乙厂145
(1)若某天调运水的总运费为4450元,则从甲、乙两水厂各调运了多少吨饮用水?
(2)设从甲厂调运饮用水x吨,总运费为W元,试写出W关于x的函数关系式,并确定x的取值范围.怎样安排调运方案才能使每天的总运费最省?

解:(1)设从甲厂调运了a吨饮用水,从乙厂调运了b吨饮用水,由题意,得

解得:
答:从甲、乙两水厂各调运25吨、35吨饮用水;

(2)设从甲厂调运饮用水x吨,则从乙厂调运(60-x)吨,由题意,得

解得:15≤x≤40.
W=20×4x+14×5(60-x)=10x+4200.
∵k=10>0,
∴W随x的增大而增大.
∴x=15时,W最小=4350,
∴每天从甲厂调运15吨,从乙厂调运45吨,每天的总运费最省.
分析:(1)设从甲厂调运了a吨饮用水,从乙厂调运了b吨饮用水,然后根据题意毎天需从社区外调运饮用水60吨与某天调运水的总运费为4450元列方程组即可求得答案;
(2)首先根据题意求得一次函数W=20×4x+14×5(60-x),又由甲厂毎天最多可调出40吨,乙厂毎天最多可调出45吨,确定x的取值范围,则由一次函数的增减性即可求得答案.
点评:本题考查了二元一次方程组与一次函数的实际应用.此题难度适中,解题的关键是理解题意,抓住等量关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•大丰市一模)某地区冬季干旱,康平社区每天需从外地调运饮用水60吨.有关部门紧急部署,从甲、乙两水厂调运饮用水到供水点,甲厂每天最多可调出40吨,乙厂每天最多可调出45吨.从两水厂运水到康平社区供水点的路程和运费如下表:
到康平社区供水点的路程(千米) 运费(元/吨•千米)
甲厂 20 4
乙厂 14 5
(1)若某天调运水的总运费为4450元,则从甲、乙两水厂各调运了多少吨饮用水?
(2)设从甲厂调运饮用水x吨,总运费为W元,试写出W关于x的函数关系式,并确定x的取值范围.怎样安排调运方案才能使每天的总运费最省?

查看答案和解析>>

同步练习册答案