【题目】如图,矩形ABCD中,点P是线段AD上任意一点,点Q为BC上一点,且AP=CQ.
(1)求证:BP=DQ;
(2)若AB=4,且当PD=5时四边形PBQD为菱形.求AD为多少.
【答案】(1)见解析;(2)8.
【解析】
(1)依据矩形的性质,通过全等三角形的判定定理判定△ABP≌△QCD,所以BP=DQ.
(2)设AP=a,AD=5+a.当四边形PBQD是菱形时,PB=PD=5.在直角△ABP中,根据勾股定理得到AP2+AB2=PB2,即a2+42=52,由此可以求得a,再可得AD的长度.
证明:(1)∵四边形ABCD是矩形,
∴∠A=∠C=90°,AB=CD,
在Rt△ABP和Rt△QCD中,
∴△ABP≌△QCD(ASA),
∴BP=DQ;
(2)设AP=a,AD=5+a.
当四边形PBQD是菱形时,PB=PD=5,
在直角△ABP中,根据勾股定理得到AP2+AB2=PB2,即a2+42=52,
可得:a=3,
所以AD=3+5=8.
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中有4个点:A(0,2),B(﹣2,﹣2),C(﹣2,2),D(3,3).
(1)在正方形网格中画出△ABC的外接圆⊙M,圆心M的坐标是 ;
(2)若EF是⊙M的一条长为4的弦,点G为弦EF的中点,求DG的最大值;
(3)点P在直线MB上,若⊙M上存在一点Q,使得P、Q两点间距离小于1,直接写出点P横坐标的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一块面积为100cm2的正方形纸片.
(1)该正方形纸片的边长为 cm(直接写出结果);
(2)小丽想沿着该纸片边的方向裁剪出一块面积为90cm2的长方形纸片,使它的长宽之比为4:3.小丽能用这块纸片裁剪出符合要求的纸片吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形的面积为28,对角线交于点;以、为邻边作平行四边形,对角线交于点;以、为邻边作平行四边形;…依此类推,则平行四边形的面积为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,我们把横 、纵坐标都是整数的点叫做整点.已知点
A(0,4),点B是轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当m=3时,点B的横坐标的所有可能值是 ▲ ;当点B的横坐标为4n(n为正整数)时,m= (用含n的代数式表示.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将几个小正方形与小长方形拼成一个边长为(a+b+c)的正方形.
(1)若用不同的方法计算这个边长为(a+b+c)的正方形面积,就可以得到一个的等式,这个等式可以为 ;
(2)请利用(1)中的等式解答下列问题:
①若三个实数a,b,c满足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;
②若三个实数x,y,z满足2x×4y÷8z=32,x2+4y2+9z2=45,求2xy﹣3xz﹣6yz的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读并回答问题.
求一元二次方程ax2+bx+c=0(a≠0)的根(用配方法).
解:ax2+bx+c=0,
∵a≠0,∴x2+x+=0,第一步
移项得:x2+x=﹣,第二步
两边同时加上()2,得x2+x+(____)2=﹣+()2,第三步
整理得:(x+)2=直接开方得x+=±,第四步
∴x=,
∴x1=,x2=,第五步
上述解题过程是否有错误?若有,说明在第几步,指明产生错误的原因,写出正确的过程;若没有,请说明上述解题过程所用的方法.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com