分析 (1)依据SAS即可求得.
(2)由△ACD≌△ABE,可得∠ACD=∠B=45°,然后根据∠ACD+∠ACB=90°即可求得.
解答 (1)△ACD≌△ABE,
证明:∵AB⊥AC,AE⊥AD,
∴∠BAC=∠DAE,
∴∠BAC+∠CAE=∠DAE+∠CAE,
∴∠BAE=∠CAD,
在△BAE与△CAD中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAE=∠CAD}\\{AE=AD}\end{array}\right.$,
∴△ACD≌△ABE(SAS),
(2)DC⊥BE,
证明:∵AB=AC,AB⊥AC,
∴∠B=∠ACB=45°,
由(1)可知△ACD≌△ABE,
∴∠ACD=∠B=45°,
∴∠BCD=∠ACD+∠ACB=90°,
∴DC⊥BE.
点评 本题考查了全等三角形的判定及性质,等腰直角三角形的性质,两直线垂直的判定等.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com