【题目】(14分)如图1,已知点B(0,6),点C为x轴上一动点,连接BC,△ODC和△EBC都是等边三角形.
图1 图2 图3
(1)求证:DE=BO;
(2)如图2,当点D恰好落在BC上时.
①求OC的长及点E的坐标;
②在x轴上是否存在点P,使△PEC为等腰三角形?若存在,写出点P的坐标;若不存在,说明理由;
③如图3,点M是线段BC上的动点(点B,C除外),过点M作MG⊥BE于点G,MH⊥CE于点H,当点M运动时,MH+MG的值是否发生变化?若不会变化,直接写出MH+MG的值;若会变化,简要说明理由.
【答案】(1)见解析 (2)① , ②存在 , ③不会变化,MH+MG=6
【解析】试题分析:(1)根据等边三角形的性质得到BC=CE,OC=CD,∠OCD=∠BCE=60°,求得∠OCB=∠DCE,根据全等三角形的性质即可得到结论;
(2)①由点B(0,6),得到OB=6,根据全等三角形的性质得到∠CDE=∠BOC=90°,根据等边三角形的性质得到∠DEC=30°,求得CE=4,过E作EF⊥x轴于F,角三角形即可得到结论;②存在,如图d,当CE=CP=4时,当CE=PE,根据等腰三角形的性质即可得到结论;③不会变化,如图c,连接EM,根据三角形的面积公式即可得到结论.
试题解析:(1)证明:∵△ODC和△EBC都是等边三角形,
∴OC=DC,BC=CE,∠OCD=∠BCE=60°.
∴∠BCE+∠BCD=∠OCD+∠BCD,
即∠ECD=∠BCO.
∴△DEC≌△OBC(SAS).
∴DE=BO.
(2)①∵△ODC是等边三角形,
∴∠OCB=60°.
∵∠BOC=90°,
∴∠OBC=30°.
设OC=x,则BC=2x,
∴x2+62=(2x)2.解得x=2.
∴OC=2,BC=4.
∵△EBC是等边三角形,
∴BE=BC=4.
又∵∠OBE=∠OBC+∠CBE=90°,
∴E(4,6).
②若点P在C点左侧,则CP=4,OP=4-2=2,点P的坐标为(-2,0);
若点P在C点右侧,则OP=2+4=6,点P的坐标为(6,0).
③不会变化,MH+MG=6.
科目:初中数学 来源: 题型:
【题目】在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.
(1)求降价后每枝玫瑰的售价是多少元?
(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB、CD相交于点O,∠BOD=45°,按下列要求画图并回答问题:
(1)利用三角尺,在直线AB上方画射线OE,使OE⊥AB;
(2)利用圆规,分别在射线OA、OE上截取线段OM、ON,使OM=ON,连接MN;
(3)利用量角器,画∠AOD的平分线OF交MN于点F;
(4)直接写出∠COF=°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:点B,C,D在同一直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE于点H,
(1)求证:△BCE≌△ACD;
(2)判断△CFH的形状并说明理由.
(3)写出FH与BD的位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法错误的是( )
A. 长方体、正方体都是棱柱 B. 圆锥和圆柱的底面都是圆
C. 三棱柱的底面是三角形 D. 六棱柱有6条棱、6个侧面、侧面为长方形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司为了节约开支,购买了质量相同的两种颜色的残缺地砖,准备用来装修地面,现已加工成如图1所示的等腰直角三角形,王聪同学设计了如图2所示的四种图案.
(1)你喜欢哪种图案?并简述该图案的形成过程.
(2)请你利用所学过的知识再设计一幅与上述不同的图案.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com