精英家教网 > 初中数学 > 题目详情
在平面直角坐标系xOy中,已知抛物线y=-
4
9
(x-2)2
+c与x轴交于A、B两点(点A在点B的左侧),交y轴的正半轴于点C,其顶点为M,MH⊥x轴于点H,MA交y轴于点N,sin∠MOH=
2
5
5

(1)求此抛物线的函数表达式;
(2)过H的直线与y轴相交于点P,过O,M两点作直线PH的垂线,垂足分别为E,F,若
HE
HF
=
1
2
时,求点P的坐标;
(3)将(1)中的抛物线沿y轴折叠,使点A落在点D处,连接MD,Q为(1)中的抛物线上的一动点,直线NQ交x轴于点G,当Q点在抛物线上运动时,是否存在点Q,使△ANG与△ADM相似?若存在,求出所有符合条件的精英家教网直线QG的解析式;若不存在,请说明理由.
分析:(1)由抛物线y=-
4
9
(x-2)2
+c与x轴交于A、B两点(点A在点B的左侧),交y轴的正半轴于点C,其顶点为M,MH⊥x轴于点H,MA交y轴于点N,sin∠MOH=
2
5
5
,求出c的值,进而求出抛物线方程;
(2)如图1,由OE⊥PH,MF⊥PH,MH⊥OH,可证△OEH∽△HFM,可知HE,HF的比例关系,求出P点坐标;
(3)首先求出D点坐标,写出直线MD的表达式,由两直线平行,两三角形相似,可得NG∥MD,直线QG解析式.
解答:解:(1)∵M为抛物线y=-
4
9
(x-2)2
+c的顶点,
∴M(2,c).
∴OH=2,MH=|c|.
∵a<0,且抛物线与x轴有交点,
∴c>0,
∴MH=c,
∵sin∠MOH=
2
5
5

MH
OM
=
2
5
5

∴OM=
5
2
c,
∵OM2=OH2+MH2
∴MH=c=4,
∴M(2,4),
∴抛物线的函数表达式为:y=-
4
9
(x-2)2
+4.

(2)如图1,∵OE⊥PH,MF⊥PH,MH⊥OH,
∴∠EHO=∠FMH,∠OEH=∠HFM.
∴△OEH∽△HFM,
HE
MF
=
HO
MH
=
1
2

HE
HF
=
1
2

∴MF=HF,
∴∠OHP=∠FHM=45°,
∴OP=OH=2,
∴P(0,2).
如图2,同理可得,P(0,-2).
精英家教网

(3)∵A(-1,0),
∴D(1,0),
∵M(2,4),D(1,0),
∴直线MD解析式:y=4x-4,
∵ON∥MH,∴△AON∽△AHM,
AN
AM
=
ON
MH
=
AO
AH
=
1
3

∴AN=
5
3
,ON=
4
3
,N(0,
4
3
).
如图3,若△ANG∽△AMD,可得NG∥MD,
∴直线QG解析式:y=4x+
4
3

如图4,若△ANG∽△ADM,可得
AN
AD
=
AG
AM

∴AG=
25
6

∴G(
19
6
,0),
∴QG:y=-
8
19
x+
4
3

综上所述,符合条件的所有直线QG的解析式为:y=4x+
4
3
或y=-
8
19
x+
4
3

精英家教网
点评:本题二次函数的综合题,要求会求二次函数的解析式和两图象的交点,会应用三角形相似定理,本题步骤有点多,做题需要细心.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有
4
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c的对称轴是x=1,并且经过(-2,-5)和(5,-12)两点.
(1)求此抛物线的解析式;
(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C 点,D是线段BC上一点(不与点B、C重合),若以B、O、D为顶点的三角形与△BAC相似,求点D的坐标;
(3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7
2
?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知A(2,-2),B(0,-2),在坐标平面中确定点P,使△AOP与△AOB相似,则符合条件的点P共有
5
5
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD全等,则点D坐标为
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步练习册答案