15£®¶¨Ò壺³¤¿í±ÈΪ$\sqrt{n}$£º1£¨nΪÕýÕûÊý£©µÄ¾ØÐγÆΪ$\sqrt{n}$¾ØÐΣ®
£¨1£©Èçͼ1Ëùʾ£¬½«Ò»ÕžØÐÎֽƬABCD½øÐÐÈçϲÙ×÷£º½«µãCÑØ׏ýµãDµÄÖ±ÏßÕÛµþ£¬Ê¹ÕÛµþºóµÄµãCÂäÔÚ±ßADÉϵĵãE´¦£¬ÕÛºÛΪDF£¬Í¨¹ý²âÁ¿·¢ÏÖDF=AD£¬Ôò¾ØÐÎABCDÊÇ$\sqrt{2}$¾ØÐÎÂð£¿Çë˵Ã÷ÀíÓÉ£®
£¨2£©ÎÒÃÇ¿ÉÒÔͨ¹ýÕÛµþµÄ·½Ê½ÕÛ³öÒ»¸ö$\sqrt{2}$¾ØÐΣ¬Èçͼ2Ëùʾ£®²Ù×÷1£º½«Õý·½ÐÎABCDÑعýµãBµÄÖ±ÏßÕÛµþ£¬Ê¹ÕÛµþºóµÄµãCÂäÔÚ¶Ô½ÇÏßBDÉϵĵãG´¦£¬ÕÛºÛΪBH£®²Ù×÷2£º½«ADÑعýµãGµÄÖ±ÏßÕÛµþ£¬Ê¹µãA£¬µãD·Ö±ðÂäÔÚ±ßAB£¬CDÉÏ£¬ÕÛºÛΪEF£®ËùµÃËıßÐÎBCEFΪ$\sqrt{2}$¾ØÐΣ¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾ÝËıßÐÎABCDÊÇ$\sqrt{2}$¾ØÐεĶ¨Ò壬ֻҪ֤Ã÷AD=$\sqrt{2}$CD¼´¿É£®
£¨2£©ÉèÕý·½ÐÎABCDµÄ±ß³¤Îª1£¬Çó³öBFµÄ³¤¼´¿É½â¾öÎÊÌ⣮

½â´ð ½â£º£¨1£©ËıßÐÎABCDÊÇ$\sqrt{2}$¾ØÐΣ®
ÀíÓÉ£º¡ßËıßÐÎABCDÊǾØÐΣ¬
¡à¡ÏEDC=¡ÏDEF=¡ÏC=90¡ã£¬
¡ßDE=DC£¬
¡àËıßÐÎCDEFÊÇÕý·½ÐΣ®
¡àDF=$\sqrt{2}$DC£¬¡ßAD=DF
¡àAD=$\sqrt{2}$DC£¬
¡à¾ØÐÎABCDÊÇ$\sqrt{2}$¾ØÐΣ®
£¨2£©ÉèÕý·½ÐÎABCDµÄ±ß³¤Îª1£¬Ôò$BD=\sqrt{2}$£®
ÓÉÕÛµþÐÔÖÊ¿ÉÖªBG=BC=1£¬¡ÏAFE=¡ÏBFE=90¡ã£¬ÔòËıßÐÎBCEFΪ¾ØÐΣ®
¡à¡ÏA=¡ÏBFE£¬
¡àEF¡ÎAD£¬
¡à$\frac{BG}{BD}=\frac{BF}{AB}$£¬¼´$\frac{1}{{\sqrt{2}}}=\frac{BF}{1}$£¬
¡àBF=$\frac{1}{{\sqrt{2}}}$£¬
¡àBC£ºBF=1£º$\frac{1}{{\sqrt{2}}}$=$\sqrt{2}$£º1£¬
¡àËıßÐÎBCEFΪ$\sqrt{2}$¾ØÐΣ®

µãÆÀ ±¾Ì⿼²é¾ØÐΡ¢Õý·½ÐεÄÐÔÖÊ¡¢¹´¹É¶¨ÀíµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÀí½âÌâÒ⣬ÓûÖ¤Ã÷ËıßÐÎÊÇ$\sqrt{2}$¾ØÐΣ¬Ö»ÒªÖ¤Ã÷Õâ¸öËıßÐεij¤¡¢¿íÖ®±ÈΪ$\sqrt{2}$£¬ÊôÓÚÖп¼³£¿¼ÌâÐÍ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®¼ÆËã
£¨1£©$£¨-\frac{3}{8}£©-\frac{1}{2}$
£¨2£©$\frac{1}{6}+£¨-\frac{2}{3}£©$
£¨3£©£¨-6£©-£¨7-8£©
£¨4£©$£¨-2\frac{1}{5}£©-£¨+\frac{1}{2}£©$
£¨5£©-20+£¨-14£©-£¨-18£©-13
£¨6£©£¨-1£©¡Â£¨-1$\frac{2}{3}$£©¡Á3
£¨7£©£¨-36$\frac{9}{11}$£©¡Â9
£¨8£©-45¡Â[£¨-$\frac{1}{3}$£©¡Â£¨-$\frac{2}{5}$£©]
£¨9£©£¨-7£©¡Á£¨+5£©-90¡Â£¨-15£©
£¨10£©£¨-$\frac{3}{4}$-$\frac{5}{9}$+$\frac{7}{12}$£©¡Â$\frac{1}{36}$
£¨11£©$-|{-\frac{2}{3}}|-|{-\frac{1}{2}¡Á\frac{2}{3}}|-|{\frac{1}{3}-\frac{1}{4}}|-|{-3}|$
£¨12£©$23¡Á£¨-5£©-£¨-3£©¡Â\frac{3}{128}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Ä³ÏØΪ´óÁ¦ÍƽøÒåÎñ½ÌÓý¾ùºâ·¢Õ¹£¬¼ÓǿѧУ¡°ÐÅÏ¢»¯¡±½¨É裬¼Æ»®ÓÃÈýÄêʱ¼ä¶ÔÈ«ÏØѧУµÄÐÅÏ¢»¯ÉèÊ©ºÍÉ豸½øÐÐÈ«Ãæ¸ÄÔìºÍ¸üÐÂ.2016ÄêÏØÕþ¸®ÒÑͶ×Ê2.5ÒÚÔªÈËÃñ±Ò£¬ÈôÿÄêͶ×ʵÄÔö³¤ÂÊÏàͬ£¬Ô¤Éè2018ÄêͶ×Ê3.6ÒÚÔªÈËÃñ±Ò£¬ÄÇôÿÄêͶ×ʵÄÔö³¤ÂÊΪ£¨¡¡¡¡£©
A£®-20%B£®40%C£®-220%D£®20%

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÅ×ÎïÏߵĽâÎöʽΪy=mx2£¨m£¾0£©ºÍµãF£¨0£¬$\frac{1}{4}$£©£¬AΪÅ×ÎïÏßÉϲ»Í¬ÓÚÔ­µãµÄÈÎÒâÒ»µã£¬¹ýµãAµÄÖ±Ïßl½»Å×ÎïÏßÓÚÁíÒ»µãB£¬½»yÖáÓÚµãD£¨µãDÔÚFµãÉÏ·½£©£¬ÇÒÓÐFA=FD£®µ±¡÷ADFΪÕýÈý½ÇÐÎʱ£¬AF=1£®
£¨1£©ÇómµÄÖµ£»
£¨2£©µ±Ö±Ïßl1¡ÎlÇÒÓëÅ×ÎïÏß½ö½»ÓÚÒ»µãEʱ£¬Ð¡Ã÷ͨ¹ýÑо¿·¢ÏÖÖ±ÏßAE¿ÉÄܹý¶¨µã£¬ÇëÄã˵Ã÷Ö±ÏßAE¿ÉÄܹý¶¨µãµÄ²ÂÏë¹ý³Ì£¬²¢Ð´³ö²ÂµÃµÄ¶¨µã×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®¶¨Ò壺yÊÇÒ»¸ö¹ØÓÚxµÄº¯Êý£¬Èô¶ÔÓÚÿ¸öʵÊýx£¬º¯ÊýyµÄֵΪÈýÊýx+2£¬2x+1£¬-5x+20ÖеÄ×îСֵ£¬Ôòº¯Êýy½Ð×öÕâÈýÊýµÄ×îСֵº¯Êý£®
£¨1£©»­³öÕâ¸ö×îСֵº¯ÊýµÄͼÏ󣬲¢ÅжϵãA£¨1£¬3£©ÊÇ·ñΪÕâ¸ö×îСֵº¯ÊýͼÏóÉϵĵ㣻
£¨2£©ÉèÕâ¸ö×îСֵº¯ÊýͼÏóµÄ×î¸ßµãΪB£¬µãA£¨1£¬3£©£¬¶¯µãM£¨m£¬m£©
¢ÙÖ±½Óд³ö¡÷ABMµÄÃæ»ý£¬ÆäÃæ»ýÊÇ2£»
¢ÚÈôÒÔMΪԲÐĵÄÔ²¾­¹ýA£¬BÁ½µã£¬Ð´³öµãMµÄ×ø±ê£»
¢ÛÒÔ¢ÚÖеĵãMΪԲÐÄ£¬ÒÔ$\sqrt{2}$Ϊ°ë¾¶×÷Ô²£¬ÔÚ´ËÔ²ÉÏÕÒÒ»µãP£¬Ê¹PA+$\frac{\sqrt{2}}{2}$PBµÄÖµ×îС£¬Ö±½Óд³ö´Ë×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬Å×ÎïÏßy=-x2+bx+cµÄ¶¥µãΪQ£¬Å×ÎïÏßÓëxÖá½»ÓÚA£¨-1£¬0£©£¬B£¨5£¬0£©Á½µã£¬ÓëyÖá½»ÓÚµãC£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ¼°Æ䶥µãQµÄ×ø±ê£»
£¨2£©ÔÚ¸ÃÅ×ÎïÏßÉÏÇóÒ»µãP£¬Ê¹µÃS¡÷PAB=S¡÷ABC£¬Çó³öµãPµÄ×ø±ê£º
£¨3£©ÈôµãDÊǵÚÒ»ÏóÏÞÅ×ÎïÏßÉϵÄÒ»¸ö¶¯µã£¬¹ýµãD×÷DE¡ÍxÖᣬ´¹×ãΪE£®ÓÐÒ»¸öͬѧ˵£º¡°ÔÚµÚÒ»ÏóÏÞÅ×ÎïÏßÉϵÄËùÓеãÖУ¬Å×ÎïÏߵĶ¥µãQÓëxÖáÏà¾à×îÔ¶£¬ËùÒÔµ±µãDÔ˶¯ÖÁµãQʱ£¬ÕÛÏßD-E-OµÄ³¤¶È×£®¡±Õâ¸öͬѧµÄ˵·¨ÕýÈ·Âð£¿Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÏÂÁи÷ÊýÖУ¬×îСµÄÊýÊÇ£¨¡¡¡¡£©
A£®0B£®-1C£®-$\sqrt{2}$D£®-2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬¾ØÐÎABCDµÄ±ßAB=3£¬AD=4£¬µãE´ÓµãA³ö·¢£¬ÑØÉäÏßADÒƶ¯£¬ÒÔCEΪֱ¾¶×÷Ô²O£¬µãFΪԲOÓëÉäÏßBDµÄ¹«¹²µã£¬Á¬½áEF¡¢CF£¬¹ýµãE×÷EG¡ÍEF£¬EGÓëÔ²OÏཻÓÚµãG£¬Á¬½áCG£®
£¨1£©ÇóÖ¤£ºËıßÐÎEFCGÊǾØÐΣ»
£¨2£©Çótan¡ÏCEGµÄÖµ£»
£¨3£©µ±Ô²OÓëÉäÏßBDÏàÇÐʱ£¬µãEÍ£Ö¹Òƶ¯£¬ÔÚµãEÒƶ¯µÄ¹ý³ÌÖУ¬ÇóËıßÐÎEFCGÃæ»ýµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÏÂÁмÆËãÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®a2•a3=a6B£®£¨b2£©3=b6C£®£¨3m£©2=6m2D£®x3¡Âx3=x

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸