精英家教网 > 初中数学 > 题目详情
抛物线y=ax2+bx+c经过直角△ABC的顶点A(-1,0),B(4,0),直角顶点C在y轴上,若抛物线的顶点在△ABC的内部(不包括边界),则a的范围是
-
1
5
<a<0或0<a<
1
5
-
1
5
<a<0或0<a<
1
5
分析:根据点A、B的坐标求出OA、OB的长,再求出△ACO和△CBO相似,根据相似三角形对应边成比例列式求出OC的长,再根据二次函数的对称性求出对称轴,设对称轴与直线BC相交于P,与x轴交于Q,利用∠ABC的正切值求出点P到x轴的距离PQ,设抛物线的交点式解析式y=a(x+1)(x-4),整理求出顶点坐标,再根据抛物线的顶点在△ABC的内部分两种情况列式求出a的取值范围即可.
解答:解:∵点A(-1,0),B(4,0),
∴OA=1,OB=4,
易得△ACO∽△CBO,
OA
OC
=
OC
OB

1
OC
=
OC
4

解得OC=2,
∵抛物线y=ax2+bx+c经过A(-1,0),B(4,0),
∴对称轴为直线x=
-1+4
2
=
3
2

设对称轴与直线BC相交于P,与x轴交于Q,
则BQ=4-
3
2
=2.5,
tan∠ABC=
OC
OB
=
PQ
BQ

2
4
=
PQ
2.5

解得PQ=
5
4

设抛物线的解析式为y=a(x+1)(x-4),
则y=a(x2-3x-4)=a(x-
3
2
2-
25
4
a,
当点C在y轴正半轴时,0<-
25
4
a<
5
4

解得-
1
5
<a<0,
当点C在y轴负半轴时,-
5
4
<-
25
4
a<0,
解得0<a<
1
5

所以,a的取值范围是-
1
5
<a<0或0<a<
1
5

故答案为:-
1
5
<a<0或0<a<
1
5
点评:本题考查了二次函数的性质,相似三角形的判定与性质,把二次函数的解析式用交点式形式表示更加简便,注意要分点C在y正半轴和负半轴两种情况讨论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知点(2,8)在抛物线y=ax2上,则a的值为(  )
A、±2
B、±2
2
C、2
D、-2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,以A(3,0)为圆心,以5为半径的圆与x轴相交于B、C,与y轴的负半轴相交于D.
(1)若抛物线y=ax2+bx+c经过B、C、D三点,求此抛物线的解析式,并写出抛物线与圆A的另一个交点E的坐标;
(2)若动直线MN(MN∥x轴)从点D开始,以每秒1个长度单位的速度沿y轴的正方向移动,且与线段CD、y轴分别交于M、N两点,动点P同时从点C出发,在线段OC上以每秒2个长度单位的速度向原点O运动,连接PM,设运动时间为t秒,当t为何值时,
MN•OPMN+OP
的值最大,并求出最大值;
(3)在(2)的条件下,若以P、C、M为顶点的三角形与△OCD相似,求实数t的值.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

若(2,0)、(4,0)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是直线(  )
A、x=0B、x=1C、x=2D、x=3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标平面内,O为原点,抛物线y=ax2+bx经过点A(6,0),且顶点B(m,6)在直线y=2x上.
(1)求m的值和抛物线y=ax2+bx的解析式;
(2)如在线段OB上有一点C,满足OC=2CB,在x轴上有一点D(10,0),连接DC,且直线DC与y轴交于点E.
①求直线DC的解析式;
②如点M是直线DC上的一个动点,在x轴上方的平面内有另一点N,且以O、E、M、N为顶点的四边形是菱形,请求出点N的坐标.(直接写出结果,不需要过程.)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.
(1)“抛物线三角形”一定是
等腰
等腰
三角形;
(2)若抛物线y=-x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;
(3)如图,△OAB是抛物线y=-x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.

查看答案和解析>>

同步练习册答案