精英家教网 > 初中数学 > 题目详情
2.已知抛物线y=ax2+bx+c的图象如图所示,则直线y=ax-b一定不经过(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 根据二次函数的图象判断出a、b的符号,进而可得出结论.

解答 解:∵二次函数的图象开口向下,
∴a<0.
∵函数的对称轴在x轴的负半轴,
∴-$\frac{b}{2a}$<0,
∴b<0,
∴-b>0,
∴直线y=ax-b经过一二四象限,不经过第三象限.
故选C.

点评 本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

12.某校260名学生参加植树活动,要求每人植4-7棵,活动结束后随机调查了部分学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.并结合调查数据作出如图所示的扇形统计图,根据统计图提供的信息,可估算出该校植树量达到6棵的学生有(  )
A.26名B.52名C.78名D.104名

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,?OABC的顶点B、C在第一象限,点A的坐标为(3,0),D为边AB的中点,反比例函数y=$\frac{k}{x}$(k>0)的图象经过点C、D两点,若∠COA=60°,则k的值为4$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.计算:|-2|-(2016-π)0+4sin45°-$\sqrt{8}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.研究几何图形,我们往往先给出这类图形的定义,再研究它的性质和判定方法.我们给出如下定义:如图,四边形ABCD中,AB=AD,CB=CD像这样两组邻边分别相等的四边形叫做“筝形”;
(1)小文认为菱形是特殊的“筝形”,你认为他的判断正确吗?
(2)小文根据学习几何图形的经验,通过观察、实验、归纳、类比、猜想、证明等方法,对AB≠BC的“筝形”的性质和判定方法进行了探究.下面是小文探究的过程,请补充完成:
①他首先发现了这类“筝形”有一组对角相等,并进行了证明,请你完成小文的证明过程.
已知:如图,在”筝形”ABCD中,AB=AD,CB=CD.
求证:∠ABC=∠ADC.
证明:连结BD,在△ABD和△BCD中,
∵AB=AD,BC=CD,
∴∠ABD=∠ADB,∠DBC=∠BDC
∴∠ABC=∠ADC.
②小文由①得到了这类“筝形”角的性质,他进一步探究发现这类“筝形”还具有其它性质,请再写出这类“筝形”的一条性质(除“筝形”的定义外)“筝形”有一条对角线平分一组对角;
③继性质探究后,小文探究了这类“筝形”的判定方法,写出这类“筝形”的一条判定方法(除“筝形”的定义外):有一条对角线垂直平分另一条对角线的四边形是筝形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在三角形ABC中,点O是AC边上一动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠ACD的平分线于点F.
(1)求证:OE=OF;
(2)当点O运动到何处时,四边形AECF会变成矩形?并证明你的结论;
(3)若AC边上存在点O,使四边形AECF是正方形,AB与EC相交于点P,与EF相交于点D,若BC=2,AE=$\sqrt{6}$,求BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.平面坐标系中,点A坐标为(2,1),连接OA把线段OA绕原点O逆时针旋转90°,那么OA扫过的面积是$\frac{5}{4}$π.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算:(x+2y)2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.若分解因式x2+mx-24=(x+3)(x+n),则m的值为-5.

查看答案和解析>>

同步练习册答案