精英家教网 > 初中数学 > 题目详情

【题目】心理学家发现:课堂上,学生对概念的接受能力s与提出概念的时间t(单位:min)之间近似满足函数关系sat2+bt+ca≠0),s值越大,表示接受能力越强.如图记录了学生学习某概念时ts的三组数据,根据上述函数模型和数据,可推断出当学生接受能力最强时,提出概念的时间为(  )

A. 8min B. 13min C. 20min D. 25min

【答案】B

【解析】

先利用条件求出解析式,再变式求出最值即可解答.

解:已知满足函数关系sat2btca≠0),

根据图像可知经过(0,43),(20,55),(30,31),

将已知点代入解析式得s=-0.12.6t43,

根据函数性质得t=-13时,s最大,

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】AB两组卡片共5张,A组的三张分别写有数字246B组的两张分别写有35.它们除了数字外没有任何区别

1随机从A组抽取一张,求抽到数字为2的概率;

2随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一条河的北岸有两个目标MN,现在位于它的对岸设定两个观测点AB.已知ABMN,在A点测得∠MAB=60°,在B点测得∠MBA=45°,AB=600米.

(1)求点MAB的距离;(结果保留根号)

(2)B点又测得∠NBA=53°,求MN的长.(结果精确到1米)

(参考数据:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,yx成反比例(如图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:

(1)药物燃烧时,y关于x的函数关系式为________,自变量x的取值范为________;药物燃烧后,y关于x的函数关系式为________.

(2)研究表明,当空气中每立方米的含药量低于1.6毫克时员工方可进办公室,那么从消毒开始,至少需要经过________分钟后,员工才能回到办公室;

(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形OABC,点P在边OA上(不与端点重合),点Q在边CO上(不与端点重合).

(1)如图(1),若∠BPQ=90°,且△OPQ与△PAB和△QPB相似,请写出表示这三个三角形相似的式子,并探究此时线段OQQBBA之间的数量关系.

(2)若∠PQB=90°,且△OPQ与△PAB、△QPB都相似,如图(2),请重新写出表示这三个三角形相似的式子,并证明ABOA=2:3.

(3)在(1)中,若OA=8OC=8,OPCQ.以矩形OABC的两边OAOC所在的直线分别为x轴和y轴,建立平面直角坐标系,如图(3),若某抛物线顶点为P,点B在抛物线上.

①求此抛物线的解析式.

②过线段BP上一动点M(点M与点PB不重合),作y轴的平行线交抛物线于点N,若记点M的横坐标为m,试求线段MN的长Lm之间的函数关系式,画出该函数的示意图,并指出m取何值时,L有最大值,最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线型拱桥,当拱顶离水面8m时,水面宽AB12m.当水面上升6m时达到警戒水位,此时拱桥内的水面宽度是多少m

下面给出了解决这个问题的两种方法,请补充完整:

方法一:如图1,以点A为原点,AB所在直线为x轴,建立平面直角坐标系xOy

此时点B的坐标为(      ),抛物线的顶点坐标为(      ),

可求这条抛物线所表示的二次函数的解析式为   

y6时,求出此时自变量x的取值,即可解决这个问题.

方法二:如图2,以抛物线顶点为原点,对称轴为y轴,建立平面直角坐标系xOy

这时这条抛物线所表示的二次函数的解析式为   

y   时,求出此时自变量x的取值为   ,即可解决这个问题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在x轴的正半轴上依次截取OA1A1A2A2A3A3A4A4A5,过点A1A2A3A4A5分别作x轴的垂线与反比例函数yx≠0)的图象相交于点P1P2P3P4P5,得直角三角形OP1A1A1P2A2A2P3A3A3P4A4A4P5A5,并设其面积分别为S1S2S3S4S5,则S10_____.(n≥1的整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC在平面直角坐标系中,若x2﹣2x+2=0的两根是x1、x2,且OC=x1+x2,OA=x1x2

(1)求B点的坐标.

(2)把△ABC沿AC对折,点B落在点B′处,线段AB′与x轴交于点D,求直线BD的解析式.

(3)在平面上是否存在点P,使D、C、B、P四点形成的四边形为平形四边形?若存在,请直接写出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平整的地面上,有若干个完全相同的棱长为10cm的小正方体堆成一个几何体,如图所示.

1)这个几何体由 个小正方体组成,请画出这个几何体的三视图;

2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有 个正方体只有一个面是黄色,有 个正方体只有两个面是黄色,有 个正方体只有三个面是黄色;

3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加几个小正方体.

查看答案和解析>>

同步练习册答案