【题目】知识储备
如图①,点E、F分别是y=3和y=﹣1上的动点,则EF的最小值是 ;
方法储备
直角坐标系的建立,在代数和几何之间架起了一座桥梁,用代数的方法解决几何问题:某数学小组在自主学习时了解了三角形的中位线及相关的定理,在学习了《坐标与位置)后,该小组同学深入思考,利用中点坐标公式,给出了三角形中位线定理的一种证明方法.如图②,在△ABC中,点D,E分别是AB,AC边的中点,DE称为△ABC的中位线,则DE∥BC且DE=BC.该数学小组建立如图③的直角坐标系,设点A(a,b),点C (0,c)(c>0).请你利用该数学学习小组的思路证明DE∥BC且DE=BC.(提示:中点坐标公式,A(x1,y1),B(x2,y2),则A,B中点坐标为(,).
综合应用
结合上述知识和方法解决问题,如图④,在△ABC中,∠ACB=90°,AC=3,BC=6,延长AC至点 D.DE⊥AD,连接EC并延长交AB边于点F.若2CD+DE=6,则EF是否存在最小值,若存在,求出最小值;若不存在,请说明理由.
【答案】知识储备: 4;方法储备:见解析;综合应用:EF存在最小值,最小值为.
【解析】
知识储备:根据垂线段最短,平行线之间的距离解决问题即可.
方法储备:如图③中,设,.利用中点坐标公式求解即可.
综合运用:建立如图平面直角坐标系,设,则.求出点的运动轨迹,转化为知识储备的类型即可解决问题.
解:知识储备:如图①,点、分别是和上的动点,则的最小值是,
故答案为4;
方法储备:如图③中,设,.
,,
,,,,
,
,
,
;
综合应用:建立如图平面直角坐标系,设,则.
,
,
点的运动轨迹是直线,设这条直线与轴交于,由轴交于.
,,
直线的解析式为,
,
根据垂线段最短可知,当时,长最小,
作于,交于.
,,
,
,
直线与直线关于原点对称,
根据对称性可知,
的最小值.
科目:初中数学 来源: 题型:
【题目】汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2016年盈利1500万元,到2018年盈利2160万元,且从2016年到2018年,每年盈利的年增长率相同.
(1)求每年盈利的年增长率;
(2)若该公司盈利的年增长率继续保持不变,那么2019年该公司盈利能否达到2500万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在中,,,线段的垂直平分线交于点,交于点,则以下结论:①是等腰三角形;②是的角平分线;③的周长;④正确的有( )
A.①②B.①③C.③④D.②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,命题:①若∠B=∠C-∠A,则△ABC是直角三角形.②若a2=(b+c)(b-c),则△ABC是直角三角形.③若∠A∶∠B∶∠C=3∶4∶5,则△ABC是直角三角形.④若a∶b∶c=5∶4∶3.则△ABC是直角三角形. 其中假命题个数为( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直径为 10cm 的⊙O 中,两条弦 AB,CD 分别位于圆心的异侧,AB∥CD,且,若 AB=8cm,则 CD 的长为_____cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.
(1)求抛物线的解析式;
(2)当点P运动到什么位置时,△PAB的面积有最大值?
(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形ABCD中,点E,F分别在AB,BC上,且AE=BF.
(1)试探索线段AF,DE的数量关系,写出你的结论并说明理由;
(2)连接EF,DF,分别取AE,EF,FD,DA的中点H,I,J,K,则四边形HIJK是什么特殊四边形?请在图2中补全图形,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、B.已知抛物线 过点A和B,与y轴交于点C.
(1)求点C的坐标,并画出抛物线的大致图象.
(2)点Q(8,m)在抛物线上,点P为此抛物线对称轴上一个动点,求PQ+PB的最小值.
(3)CE是过点C的⊙M的切线,点E是切点,求OE所在直线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们约定:对角线互相垂直的凸四边形叫做“正垂形”.
(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“正垂形”的有 ;
②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形 “正垂形”.(填“是”或“不是”)
(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ACB﹣∠CDB=∠ACD﹣∠CBD,当≤OE≤时,求AC2+BD2的取值范围;
(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“正垂形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.试直接写出满足下列三个条件的抛物线的解析式;
①; ②; ③“正垂形”ABCD的周长为12.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com