精英家教网 > 初中数学 > 题目详情
如图所示,在平常对某种药品的需求量y1(万件),供应量y2(万件)与价格x(元/件)分别近似满足下列函数关系式:y1=-x+50,y2=2x-22.当y1=y2时,该药品的价格称为稳定价格,需求量称为稳定需求量.
(1)图象中a,b,c的值分别为:a=______,b=______,c=______.
(2)求该药品的稳定价格与稳定需求量.
(3)若供应量和需求量这两种量之间相差3万件,求此时对应的价格.
(1)当y2=0时,2x-22=0,解得:x=11,
则a=11;
当y1=0时,-x+50=0,解得:x=50,
则b=50,
当x=50时,y2=2×50-22=78,
则c=78;

(2)联立两个解析式得
y=2x-22
y=-x+50
,解得
x=24
y=26

答:该药品的稳定价格为24元/件,稳定需求量为26万件;

(3)当y1-y2=3时,-x+50-(2x-22)=3,解得:x=23;
当y2-y1=3时,(2x-22)-(-x+50)=3,解得:x=25.
答:此时对应的价格为23元/件或25元/件.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知一次函数的图象经过点(3,6)与点(
1
2
,-
1
2
),求这个函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,一次函数y=-
3
4
x+3的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.则过B、C两点直线的解析式为(  )
A.y=
1
7
x+3
B.y=
1
5
x+3
C.y=
1
4
x+3
D.y=
1
3
x+3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点A(0,6),点B是x轴正半轴上的一个动点,连接AB,取AB的中点M,将线段MB绕着点B按顺时针方向旋转90°,得到线段BC.过点B作x轴的垂线交直线AC于点D.设点B坐标是(t,0).
(1)当t=4时,求直线AB的解析式;
(2)用含t的代数式表示点C的坐标及△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数y=图象过点A(2,4),B(0,3)、题目中的矩形部分是一段因墨水污染而无法辨认的文字.
(1)根据现有的信息,请求出题中的一次函数的解析式.
(2)根据关系式画出这个函数图象,
(3)过点B能不能画出一直线BC将△ABO(O为坐标原点)分成面积比为1:2的两部分?如能,可以画出几条,并求出其中一条直线所对应的函数关系式,其它的直接写出函数关系式;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数y=
3
+m(O<m≤1)的图象为直线l,直线l绕原点O旋转180°后得直线l',△ABC三个顶点的坐标分别为A(-
3
,-1)、B(
3
,-1)、C(0,2).
(1)直线AC的解析式为______,直线l'的解析式为______(可以含m);
(2)如图,l、l'分别与△ABC的两边交于E、F、G、H,当m在其范围内变化时,判断四边形EFGH中有哪些量不随m的变化而变化?并简要说明理由;
(3)将(2)中四边形EFGH的面积记为S,试求m与S的关系式,并求S的变化范围;
(4)若m=1,当△ABC分别沿直线y=x与y=
3
x平移时,判断△ABC介于直线l,l'之间部分的面积是否改变?若不变,请指出来;若改变,请写出面积变化的范围.(不必说明理由)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某市采用价格调控的手段达到节约用水的目的,制定如下用水收费标准:每户每月用水不超过6m3,水费按a元/m3收费;若超过
6m3,6m3以内的仍按a元/m3收费,超过6m3的部分以b元/m3收费.某户居民5、6月份用水量和水费如下表:
月份用水量(m3水费(元)
557.5
6927
设该用户每月用水量为xm3,应交水费y元.
(1)求出a,b的值;
(2)写出用水量不超过6m3和超过6m3时,y与x之间的函数关系式;
(3)若该用户7月份用水量为8m3,他应交多少元水费?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线l1的解析表达式为:y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.
(1)求直线l2的函数关系式;
(2)求△ADC的面积;
(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将长、宽、高分别为a,b,c(a>b>c,单位:cm)的三块相同的长方体按图所示的三种方式放入三个底面面直径为d(d>
a2+b2
),高为h的相同圆柱形水桶中,再向三个水桶内以相同的速度匀速注水,直至注满水桶为止,水桶内的水深y(cm)与注水时间t(s)的函数关系如图所示,则注水速度为(  )
A.30cm2/sB.32cm2/sC.34cm2/sD.40cm2/s

查看答案和解析>>

同步练习册答案