精英家教网 > 初中数学 > 题目详情
两点在一次函数图象上的位置如图所示,两点的坐标分别为,下列结论正确的是(   )
A.B.C.D.
B.

试题分析:∵根据函数的图象可知:y随x的增大而增大,
∴y+b<y,x+a<x,
∴b<0,a<0,
∴选项A、C、D都不对,只有选项B正确,
故选B.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,A1B1和A2B2是水面上相邻的两条赛道(看成两条互相平行的线段).甲是一名游泳运动健将,乙是一名游泳爱好者,甲在赛道A1B1上从A1处出发,到达B1后,以同样的速度返回A1处,然后重复上述过程;乙在赛道A2B2上以2m/s的速度从B2处出发,到达A2后以相同的速度回到B2处,然后重复上述过程(不考虑每次折返时的减速和转向时间).若甲、乙两人同时出发,设离开池边B1B2的距离为y(m),运动时间为t(s),甲游动时,y(m)与t(s)的函数图象如图2所示.
(1)赛道的长度是   m,甲的速度是   m/s;
(2)分别写出甲在时,y关于t的函数关系式:
,y=    ;当时,y=   
(3)在图2中画出乙在2分钟内的函数大致图象(用虚线画);
(4)请你根据(3)中所画的图象直接判断,若从甲、乙两人同时开始出发到2分钟为止,甲、乙共相遇了几次?2分钟时,乙距池边B1B2的距离为多少米。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:关于x的一元二次方程mx2﹣(4m+1)x+3m+3="0" (m>1).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x1,x2(其中x1>x2),若y是关于m的函数,且y=x1﹣3x2,求这个函数的解析式;
(3)将(2)中所得的函数的图象在直线m=2的左侧部分沿直线m=2翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当关于m的函数y=2m+b的图象与此图象有两个公共点时,b的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,是一张放在平面直角坐标系中的矩形纸片,为原点,点轴的正半轴上,,在上取一点,将纸片沿翻折,使点落在边上的点处,求直线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知一次函数的图象经过点(0,1),且满足y随x的增大而增大,则该一次函数的解析式可以为________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,正比例函数y1与反比例函数y2相交于点E(﹣1,2),若y1>y2>0,则x的取值范围在数轴上表示正确的是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,在平行四边形ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B﹣A﹣D﹣A运动,沿B﹣A运动时的速度为每秒13个单位长度,沿A﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.
(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).
(2)连结AQ,在点P沿B﹣A﹣D运动过程中,当点P与点B、点A不重合时,记△APQ的面积为S.求S与t之间的函数关系式.
(3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B﹣A﹣D运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.
(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

某运输公司的一艘轮船在长江上航行,往返于A、B两地.假设轮船在静水中的速度不变,长江的水流速度不变,该轮船从A地出发,逆水航行到B,停留一段时间(卸货、装货、加燃料等),又顺水航行返回A.若该轮船从A出发后所用的时间为x(小时),轮船距A的距离为y(千米),则下列各图形中,能够反映y与x之间函数关系的大致图象是

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系中的大致图象是(   ).

查看答案和解析>>

同步练习册答案