分析 (1)根据直角三角形的性质得到CE=$\frac{1}{2}$AB=EA,根据轴对称的性质得到AE=AF,CE=CF,得到CE=EA=AF=CF,根据菱形的判定定理证明结论;
(2)根据菱形的性质得到OA=OC,OE=OF,根据三角形中位线定理求出OE,得到答案.
解答 (1)证明:∵∠ACB=90°,点E是AB边的中点,
∴CE=$\frac{1}{2}$AB=EA,
∵点F是点E关于AC所在直线的对称点,
∴AE=AF,CE=CF,
∴CE=EA=AF=CF,
∴四边形CFAE为菱形;
(2)解:∵四边形CFAE为菱形;
∴OA=OC,OE=OF,
∴OE=$\frac{1}{2}$BC=5,
∴OF=5.
点评 本题考查的是菱形的判定和性质、轴对称的性质,掌握四条边相等的四边形是菱形、菱形的对角线垂直且互相平分是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | 32 | B. | 16 | C. | 8 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com