精英家教网 > 初中数学 > 题目详情
阅读:如图(1),正方形ABCD的边AB在x轴上,C、D在抛物线y=-x(x-2)的图象上,我们称正方形ABCD内接于抛物线y=-x(x-2).抛物线y=-x(x-2)的对称轴交x轴于点M,设正方形ABCD的边长为a1,那么a1满足哪个二元一次方程呢?由对称性可知M是AB的中点,则AM=
1
2
a1
,AD=a1.易知OM=1,所以OA=1-
1
2
a1
,所以D点坐标为(1-
1
2
a1a1)
,代入抛物线解析式并化简可知a1满足二元一次方程(
1
2
)2a12+a1-1=0
;根据以上材料探索:(第(1)小题要求写出过程,其它两小题只要写出答案,不必要过程)
(1)如图(2),若并排两个正方形内接于抛物线y=-x(x-2),则每个正方形的边长a2满足的二元一次方程是
 

(2)如图(3),若并排三个正方形内接于抛物线y=-x(x-2),则每个正方形的边长a3满足的二元一次方程是
 

(3)如图(4),若并排n个正方形内接于抛物线y=-x(x-2),则每个正方形的边长an满足的二元一次方程是
 

精英家教网
分析:根据图1的解题方法,根据抛物线、正方形的对称性求出D点坐标,代入抛物线解析式,变形即可.
解答:解:(1)∵每个正方形的边长a2
∴由对称性可知M是AB的中点,则AM=a2,AD=a2,易知OM=1,所以OA=1-a2,所以D点坐标为(1-a2,a2),
代入抛物线解析式y=-x(x-2),得-(1-a2)(1-a2-2)=a2,整理得a22+a2-1=0,
即a2满足二元一次方程(
2
2
)2a22+a2-1=0
精英家教网
(2)同理,得(
3
2
)2a32+a3-1=0

(3)由此,得(
n
2
)2an2+an-1=0
点评:本题考查了二次函数的综合运用.关键是通过材料的阅读,得出解题方法,进一步推出一般结论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

(2012•石家庄二模)阅读下列材料:
问题:如图1,在正方形ABCD内有一点P,PA=
5
,PB=
2
,PC=1,求∠BPC的度数.
小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连接PP′.
请你参考小明同学的思路,解决下列问题:
(1)图2中∠BPC的度数为
135°
135°

(2)如图3,若在正六边形ABCDEF内有一点P,且PA=2
13
,PB=4,PC=2,则∠BPC的度数为
120°
120°
,正六边形ABCDEF的边长为
2
7
2
7

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2013•镇江)【阅读】
如图1,在平面直角坐标系xOy中,已知点A(a,0)(a>0),B(2,3),C(0,3).过原点O作直线l,使它经过第一、三象限,直线l与y轴的正半轴所成角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].
【理解】
若点D与点A重合,则这个操作过程为FZ[
45°
45°
3
3
];
【尝试】
(1)若点D恰为AB的中点(如图2),求θ;
(2)经过FZ[45°,a]操作,点B落在点E处,若点E在四边形0ABC的边AB上,求出a的值;若点E落在四边形0ABC的外部,直接写出a的取值范围;
【探究】
经过FZ[θ,a]操作后,作直线CD交x轴于点G,交直线AB于点H,使得△ODG与△GAH是一对相似的等腰三角形,直接写出FZ[θ,a].

查看答案和解析>>

科目:初中数学 来源:2012年广西柳州市初三毕业学业考试模拟考试数学试卷(带解析) 题型:解答题

阅读下列材料:
问题:如图1,在正方形ABCD内有一点P,PA=,PB=,PC=1,求∠BPC的度数.
小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连结PP′.
请你参考小明同学的思路,解决下列问题:
(1) 图2中∠BPC的度数为      
(2) 如图3,若在正六边形ABCDEF内有一点P,且PA=,PB=4,PC=2,则∠BPC的度数为       ,正六边形ABCDEF的边长为      

图1                       图2                    图3

查看答案和解析>>

科目:初中数学 来源:2012年广西柳州市初三毕业学业考试模拟考试数学试卷(解析版) 题型:解答题

阅读下列材料:

问题:如图1,在正方形ABCD内有一点P,PA=,PB=,PC=1,求∠BPC的度数.

小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连结PP′.

请你参考小明同学的思路,解决下列问题:

(1) 图2中∠BPC的度数为      

(2) 如图3,若在正六边形ABCDEF内有一点P,且PA=,PB=4,PC=2,则∠BPC的度数为        ,正六边形ABCDEF的边长为      

     图1                        图2                     图3

 

查看答案和解析>>

科目:初中数学 来源:2012年广西柳州市中考数学模拟试卷(6月份)(解析版) 题型:解答题

阅读下列材料:
问题:如图1,在正方形ABCD内有一点P,PA=,PB=,PC=1,求∠BPC的度数.
小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连接PP′.
请你参考小明同学的思路,解决下列问题:
(1)图2中∠BPC的度数为______;
(2)如图3,若在正六边形ABCDEF内有一点P,且PA=,PB=4,PC=2,则∠BPC的度数为______,正六边形ABCDEF的边长为______

查看答案和解析>>

同步练习册答案