精英家教网 > 初中数学 > 题目详情

【题目】如图所示,在△ABC中,AE、BF是角平分线,它们相交于点O,AD是高,∠BAC=50°,∠C=70°,求∠DAC、∠BOA的度数.

【答案】解:∵AD是高
∴∠ADC=90°
∵∠C=70°
∴∠DAC=180°﹣90°﹣70°=20°
∵∠BAC=50°,∠C=70°,AE是角平分线
∴∠BAO=25°,∠ABC=60°
∵BF是∠ABC的角平分线
∴∠ABO=30°
∴∠BOA=180°﹣∠BAO﹣∠ABO=125°
【解析】根据三角形三内角的和等于180°可求解。
【考点精析】认真审题,首先需要了解角的平分线(从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线),还要掌握三角形的内角和外角(三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知点A(-4,2),B(-1,-2),ABCD的对角线交于坐标原点O.

(1)请直接写出点C,D的坐标;
(2)写出从线段AB到线段CD的变换过程;
(3)直接写出ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图Rt△AOB∽△DOC,∠AOB=∠COD=90°,M为OA的中点,OA=6,OB=8,将△COD绕O点旋转,连接AD,CB交于P点,连接MP,则MP的最大值(  )

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】南澳大桥是广东省第一座真正意义的跨海大桥,该桥全长约11100m,用科学记数法表示这个数为( ).

A.1.11×104mB.11.1×103 mC.0.111×104mD.1.11×103m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】碧华学校在校师生约为0.3万人,近似数0.3万是精确到(

A.十分位B.百分位C.千位D.百位

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若满足不等式20<5-2(2+2x)<50的最大整数解为a,最小整数解为b,则a+b之值为何?( )
A.-15
B.-16
C.-17
D.-18

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是(
A.b=﹣1
B.b=2
C.b=﹣2
D.b=0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某县筹备20周年县庆,园林部门决定利用3 490盆甲种花卉和2 950盆乙种花卉搭配A,B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆;搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.
(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;
(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低,最低成本是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.

(1)求证:△AEF≌△DEB;
(2)证明四边形ADCF是菱形;
(3)若AC=3,AB=4,求菱形ADCF的面积.

查看答案和解析>>

同步练习册答案