分析 (1)根据角平分线的性质得到DC=DE,证明Rt△FCD≌Rt△BED,根据全等三角形的性质证明;
(2)证明Rt△ACD≌Rt△AED,根据全等三角形的性质证明.
解答 (1)证明:∵AD是∠BAC的平分线,DE⊥AB,∠C=90°,
∴DC=DE,
在Rt△FCD和Rt△BED中,
$\left\{\begin{array}{l}{DC=DE}\\{DF=DB}\end{array}\right.$,
∴Rt△FCD≌Rt△BED,
∴CF=EB;
(2)解:在Rt△ACD和Rt△AED中,
$\left\{\begin{array}{l}{DC=DE}\\{AD=AD}\end{array}\right.$,
∴Rt△ACD≌Rt△AED,
∴AC=AE,
∴AB=AE+BE=AF+FC+BE=AF+2BE.
点评 本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com