精英家教网 > 初中数学 > 题目详情
(2001•黑龙江)如图,直径为13的⊙O′经过原点O,并且与x轴、y轴分别交于A、B两点,线段OA、OB(OA>OB)的长分别是方程x2+kx+60=0的两根.
(1)求线段OA、OB的长;
(2)已知点C在劣弧OA上,连接BC交OA于D,当OC2=CD•CB时,求C点的坐标;
(3)在(2)问的条件下,在⊙O′上是否存在点P,使S△POD=S△ABD?若存在,求出点P的坐标;若不存在,请说明理由.

【答案】分析:(1)根据根与系数的关系写出OA+OB和OA•OB的值.连接AB,根据90°的圆周角所对的弦是直径,再结合勾股定理列方程求解.
(2)若OC2=CD•CB,则三角形OCB相似于三角形DCO,则∠COD=∠CBO.又∠COD=∠CBA,则∠CBO=∠CBA,所以点C是弧OA的中点.连接O′C,根据垂径定理的推论,得O′E⊥OA.再进一步根据垂径定理和勾股定理进行计算即可.
(3)首先求得直线BC的解析式,求得D的坐标,根据面积相等即可求得P的纵坐标,根据圆的直径即可作出判断.
解答:解:(1)连接AB,∵∠BOA=90°,
∴AB为直径,根与系数关系得OA+OB=-k,OA•OB=60;
根据勾股定理,得OA2+OB2=169,
即(OA+OB)2-2OA•OB=169,
解得k2=289,∴k=±17(正值舍去).
则有方程x2-17x+60=0,x=12,或5.
又OA>OB,
∴OA=12,OB=5.

(2)若OC2=CD•CB,则△OCB∽△DCO,
∴∠COD=∠CBO,
又∵∠COD=∠CBA,
∴∠CBO=∠CBA,
所以点C是弧OA的中点.
连接O′C交OA于点E,根据垂径定理的推论,得O′E⊥OA,
根据垂径定理,得OE=6,
根据勾股定理,得O′E=2.5,
∴CE=4,即C(6,-4).

(3)设直线BC的解析式是y=kx+b,

解得:
则直线BC的解析式是y=-x+5,
令y=0,解得:x=
则OD=,AD=12-=
∴S△ABD=×5×=
若S△ABD=2S△OBD,P到x轴的距离是h,
×h=,解得:h=13.
而⊙O′的直径是13,因而P不能在⊙O′上,
故P不存在.
点评:综合运用了相似三角形的判定和性质、圆周角定理的推论、勾股定理以及垂径定理及其推论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2001•黑龙江)如图,在同一直角坐标系内,直线l1:y=(k-2)x+k,和l2:y=kx的位置可能是(  )

查看答案和解析>>

科目:初中数学 来源:2001年全国中考数学试题汇编《图形的相似》(03)(解析版) 题型:解答题

(2001•黑龙江)如图,在平行四边形ABCD中,AB=4cm,BC=1cm,E是CD边上一动点,AE、BC的延长线交于点F.设DE=x(cm),BF=y(cm).
(1)求y(cm)与x(cm)之间的函数关系式,并写出自变量x的取值范围;
(2)画出此函数的图象.

查看答案和解析>>

科目:初中数学 来源:2001年全国中考数学试题汇编《图形的相似》(02)(解析版) 题型:解答题

(2001•黑龙江)如图,直径为13的⊙O′经过原点O,并且与x轴、y轴分别交于A、B两点,线段OA、OB(OA>OB)的长分别是方程x2+kx+60=0的两根.
(1)求线段OA、OB的长;
(2)已知点C在劣弧OA上,连接BC交OA于D,当OC2=CD•CB时,求C点的坐标;
(3)在(2)问的条件下,在⊙O′上是否存在点P,使S△POD=S△ABD?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2001年全国中考数学试题汇编《四边形》(03)(解析版) 题型:解答题

(2001•黑龙江)如图,直径为13的⊙O′经过原点O,并且与x轴、y轴分别交于A、B两点,线段OA、OB(OA>OB)的长分别是方程x2+kx+60=0的两根.
(1)求线段OA、OB的长;
(2)已知点C在劣弧OA上,连接BC交OA于D,当OC2=CD•CB时,求C点的坐标;
(3)在(2)问的条件下,在⊙O′上是否存在点P,使S△POD=S△ABD?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2001年黑龙江省中考数学试卷(解析版) 题型:填空题

(2001•黑龙江)抛物线y=ax2+bx+c经过点(1,0),(-1,-6),(2,6),则该抛物线与y轴交点的纵坐标为   

查看答案和解析>>

同步练习册答案