精英家教网 > 初中数学 > 题目详情

【题目】如图,已知一次函数y1=kx+b图象与x轴相交于点A,与反比例函数 的图象相交于B(﹣1,5)、C( ,d)两点.点P(m,n)是一次函数y1=kx+b的图象上的动点.

(1)求k、b的值;
(2)设﹣1<m< ,过点P作x轴的平行线与函数 的图象相交于点D.试问△PAD的面积是否存在最大值?若存在,请求出面积的最大值及此时点P的坐标;若不存在,请说明理由;
(3)设m=1﹣a,如果在两个实数m与n之间(不包括m和n)有且只有一个整数,求实数a的取值范围.

【答案】
(1)

解:将B点的坐标代入y2= ,得c=﹣5,

则y2=﹣

把x= 代入得y=﹣2,

则C( ,﹣2)

将B、C代入直线y1=kx+b得:


(2)

解:存在.

令y1=0,x= ,则A的坐标是:( ,0);

由题意,点P在线段AB上运动(不含A,B),

设点P( ,n),

∵DP平行于x轴,

∴D、P的纵坐标都是n,

∴D的坐标是:(﹣ ,n),

∴S= nPD= + )×n=﹣ (n﹣ 2+

而﹣2m+3=n,得0<n<5;

所以由S关于n的函数解析式,所对应的抛物线开口方向决定,当n= ,即P( ),S的最大值是:


(3)

解:由已知P(1﹣a,2a+1),易知,m≠n,1﹣a≠2a+1,a≠0;

若a>0,m<1<n,由题设m≥0,n≤2,

解不等式组的解集是:0<a≤

若a<0,n<1<m,由题设n≥0,m≤2,

解得:﹣ ≤a<0;

综上:a的取值范围是:﹣ ≤a<0,0<a≤


【解析】(1)B、C两点在反比例函数图象上,根据反比例函数图象上点的横纵坐标的积相等,可求d的值,将B、C两点坐标代入y1=kx+b中,列方程组可求k、b的值;(2)存在,根据直线解析式可求A点坐标,点P在直线上,点P( ,n),PD∥x轴,则D、P的纵坐标都是n,此时,D(﹣ ,n),则PD= + ,由S= nPD,可求△PAD的面积表达式,利用二次函数的性质求最大值;(3)点P(m,n)在一次函数图象上,由一次函数解析式可知,设m=1﹣a,则P(1﹣a,2a+1),依题意m≠n,可知a≠0,根据a>0和a<0两种情况,分别求实数a的取值范围.
【考点精析】关于本题考查的一次函数的性质和一次函数的图象和性质,需要了解一般地,一次函数y=kx+b有下列性质:(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小;一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】测量计算是日常生活中常见的问题,如图,建筑物BC的屋顶有一根旗杆AB,从地面上D点处观测旗杆顶点A的仰角为50°,观测旗杆底部B点的仰角为45°,(可用的参考数据:sin50°≈0.8,tan50°≈1.2)

(1)若已知CD=20米,求建筑物BC的高度;
(2)若已知旗杆的高度AB=5米,求建筑物BC的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点E,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点,若AC⊥BD,且AC≠BD,则四边形EFGH的形状是(填“梯形”“矩形”或“菱形”)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某开发商进行商铺促销,广告上写着如下条款: 投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:
方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%.
方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.
(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率= ×100%)
(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定.现随机抽取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:
根据上述信息完成下列问题:
(1)求这次抽取的样本的容量;
(2)请在图②中把条形统计图补充完整;
(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B级)有多少份?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD,BC于点E,F,作BH⊥AF于点H,分别交AC,CD于点G,P,连接GE,GF.

(1)求证:△OAE≌△OBG;
(2)试问:四边形BFGE是否为菱形?若是,请证明;若不是,请说明理由;
(3)试求: 的值(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请将下面2小题的结果都精确到0.1米,参考数据: ≈1.732).
(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为米;
(2)一座建筑物GH距离坡角A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长是2个单位,一只乌龟从A点出发以2个单位/秒的速度顺时针绕正方形运动,另有一只兔子也从A点出发以6个单位/秒的速度逆时针绕正方形运动,则第2018次相遇在(  )

A. A B. B C. C D. D

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明设计了一个问题,分两步完成:

(1)已知关于x的一元一次方程,请画出数轴,并在数轴上标注a对应的点,分别记作A,B;

(2)在第1问的条件下,在数轴上另有一点C对应的数为y,CA的距离是CB的距离的5,C在表示5的点的左侧,y的值.

查看答案和解析>>

同步练习册答案