【题目】如图,∠B=90°,AB=3,BC=4,CD=12,AD=13.求四边形ABCD的面积.
【答案】36.
【解析】试题分析:连接AC,在直角三角形ABC中,由AB及BC的长,利用勾股定理求出AC的长,再由AD及CD的长,利用勾股定理的逆定理得到三角形ACD为直角三角形,根据四边形ABCD的面积=直角三角形ABC的面积+直角三角形ACD的面积,即可求出四边形的面积.
试题解析:解:连接AC.如图所示:
∵∠B=90°,∴△ABC为直角三角形.又∵AB=3,BC=4,∴根据勾股定理得:AC==5.又∵CD=12,AD=13,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD为直角三角形,∠ACD=90°,则S四边形ABCD=S△ABC+S△ACD=ABBC+ACCD=×3×4+×5×12=36.
故四边形ABCD的面积是36.
科目:初中数学 来源: 题型:
【题目】儿童节期间,某公园游戏场举行一场活动.有一种游戏的规则是:在一个装有8个红球和若干白球(每个球除颜色外,其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个海宝玩具.已知参加这种游戏的儿童有40 000人,公园游戏场发放海宝玩具8 000个.
(1)求参加此次活动得到海宝玩具的频率?
(2)请你估计袋中白球的数量接近多少个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,∠A=90°,点D、E分别在AB、AC上,DE∥BC,CF与DE的延长线垂直,垂足为F.
(1)求证:∠B=∠ECF ;
(2)若∠B=55°,求∠CED的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1个单位长度的小正方形组成的网格中.
(1)把平移至的位置,使点与对应,得到;
(2)图中可用字母表示,与线段平行且相等的线段有哪些?
(3)求四边形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】己知长方形,为坐标原点,点坐标为,点在轴的正半轴上,点在轴的正半轴上,是线段上的动点,设,已知点在第一象限且是直线上一点,若是等腰直角三角形.
()求点的坐标并写出解题过程.
()直角向下平移个单位后,在该直线上是否存在点,使是等腰直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了深化改革,某校积极开展校本课程建设,计划成立“文学鉴赏”“科学实验”“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团.为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):
某校被调查学生选择社团意向统计表
选择意向 | 文学鉴赏 | 科学实验 | 音乐舞蹈 | 手工编织 | 其他 |
所占百分比 | a | 35% | b | 10% | c |
根据统计图表中的信息,解答下列问题:
(1)求本次调查的学生总人数及a,b,c的值;
(2)将条形统计图补充完整.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l1∥l2,且l3和l1、l2分别交于A、B两点,点P在直线AB上.
(1)试说明∠1,∠2,∠3之间的关系式;(要求写出推理过程)
(2)如果点P在A、B两点之间(点P和A、B不重合)运动时,试探究∠1,∠2,∠3之间的关系是否发生变化?(只回答)
(3)如果点P在A、B两点外侧(点P和A、B不重合)运动时,试探究∠1,∠2,∠3之间的关系.(要求写出推理过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是( )
A. ∠BAC=70° B. ∠DOC=90° C. ∠BDC=35° D. ∠DAC=55°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com