精英家教网 > 初中数学 > 题目详情
精英家教网已知抛物线y=x2+kx+k-1.
(1)求证:无论k为什么实数,抛物线经过x轴上的一定点;
(2)设抛物线与y轴交于C点,与x轴交于A(x1,0)、B(x2,0)两点,且满足x1<x2,|x1|<|x2|,S△ABC=6.问:过A,B,C三点的圆与该抛物线是否有第四个交点?试说明理由.如果有,求出其坐标.
分析:(1)令y=0,解方程x2+kx+k-1=0,即可求出抛物线与x轴两交点的横坐标,定点为与k值无关的点;
(2)过A、B、C三点的圆与抛物线有第四个交点D,根据A、B、C三点坐标,讨论k的范围,表示△ABC的面积,列方程求k,再根据对称性求D点坐标.
解答:(1)证明:令y=O,有x2+kx+k-1=0,
解得x1=-1,x2=1-k,
∴抛物线通过x轴上一定点(-1,0).

(2)解:过A、B、C三点的圆与抛物线有第四个交点D.
∵|x1|<|x2|,C点在y轴上,
∴点C不是抛物线的顶点,
由于圆和抛物线都是轴对称图形,
过A、B、C三点的圆与抛物线组成一个轴对称图形,
所以过A、B、C三点的圆与抛物线的第四个交点与C点是对称点.
∵x1=-1<0,x1<x2,|x1|<|x2|,
∴x2>1,
即x2=1-k>1,
∴k<0
∵S△ABC=6,
1
2
|1-k|•(1+|1-k|)=6
∴(1-k)2+(1-k)-12=0,
解得1-k=4或1-k=3.
∴k=5(舍去),k=-2,
∴y=x2-2x-3,
其对称轴为x=1,
根据对称性,D点坐标为(2,-3).
点评:本题考查了抛物线与坐标轴交点的坐标求法,根据面积确定抛物线解析式的待定系数及抛物线的对称性的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=x2-8x+c的顶点在x轴上,则c等于(  )
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范围,并证明A、B两点都在原点O的左侧;
(2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于点B,且OA=OB.
精英家教网(1)求b+c的值;
(2)若点C在抛物线上,且四边形OABC是平行四边形,试求抛物线的解析式;
(3)在(2)的条件下,作∠OBC的角平分线,与抛物线交于点P,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•虹口区一模)如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过A(0,3),B(1,0)两点,顶点为M.
(1)求b、c的值;
(2)将△OAB绕点B顺时针旋转90°后,点A落到点C的位置,该抛物线沿y轴上下平移后经过点C,求平移后所得抛物线的表达式;
(3)设(2)中平移后所得的抛物线与y轴的交点为A1,顶点为M1,若点P在平移后的抛物线上,且满足△PMM1的面积是△PAA1面积的3倍,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黔南州)已知抛物线y=x2-x-1与x轴的交点为(m,0),则代数式m2-m+2011的值为(  )

查看答案和解析>>

同步练习册答案