分析 ⊙O切AC于E,切BC于F,切AB于G,连OE,OF,根据切线的性质得到OE⊥AC,OF⊥BC,则四边形CEOF为正方形,得到CE=CF=r,根据切线长定理得AE=AG=6-r,BF=BG=8-r,利用6-r+8-r=10可求出r.
解答 解:如图,⊙O切AC于E,切BC于F,切AB于G,连OE,OF,
∴OE⊥AC,OF⊥BC,
∴四边形CEOF为正方形,
∵∠C=90°,AC=6,BC=8,
∴AB=10,
设⊙O的半径为r,则CE=CF=r,
∴AE=AG=6-r,BF=BG=8-r,
∴AB=AG+BG=AE+BF,即6-r+8-r=10,
∴r=2.
故答案为2.
点评 本题考查了圆的切线的性质和切线长定理:圆的切线垂直于过切点的半径;从圆外一点引圆的两条切线,切线长相等.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com