精英家教网 > 初中数学 > 题目详情
如图,已知B(-1,0),C(1,0),A为y轴正半轴上一点,点D为第二象限一动点,E在BD的延长线上,CD交AB于F,且∠BDC=∠BAC.
(1)求证:∠ABD=∠ACD;
(2)求证:AD平分∠CDE;
(3)若在D点运动的过程中,始终有DC=DA+DB,在此过程中,∠BAC的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC的度数?
分析:(1)根据∠BDC=∠BAC,∠DFB=∠AFC,再结合∠ABD+∠BDC+∠DFB=∠BAC+∠ACD+∠AFC=180°,即可得出结论.
(2)过点A作AM⊥CD于点M,作AN⊥BE于点N.运用“AAS”证明△ACM≌△ABN得AM=AN.根据“到角的两边距离相等的点在角的平分线上”得证;
(3)运用截长法在CD上截取CP=BD,连接AP.证明△ACP≌ABD得△ADP为等边三角形,从而求∠BAC的度数.
解答:证明:(1)∵∠BDC=∠BAC,∠DFB=∠AFC,
又∵∠ABD+∠BDC+∠DFB=∠BAC+∠ACD+∠AFC=180°,
∴∠ABD=∠ACD;
(2)过点A作AM⊥CD于点M,作AN⊥BE于点N.
则∠AMC=∠ANB=90°.
∵OB=OC,OA⊥BC,
∴AB=AC,
∵∠ABD=∠ACD,
∴△ACM≌△ABN (AAS)
∴AM=AN.
∴AD平分∠CDE.(到角的两边距离相等的点在角的平分线上);
(3)∠BAC的度数不变化.
在CD上截取CP=BD,连接AP.
∵CD=AD+BD,
∴AD=PD.
∵AB=AC,∠ABD=∠ACD,BD=CP,
∴△ABD≌△ACP.
∴AD=AP;∠BAD=∠CAP.
∴AD=AP=PD,即△ADP是等边三角形,
∴∠DAP=60°.
∴∠BAC=∠BAP+∠CAP=∠BAP+∠BAD=60°.
点评:此题考查全等三角形的判定与性质,运用了角平分线的判定定理和“截长补短”的数学思想方法,综合性较强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC内接于⊙O,过A作⊙O的切线,与BC的延长线交于D,且AD=
3
+1
,CD精英家教网=2,∠ADC=30°
(1)AC与BC的长;
(2)求∠ABC的度数;
(3)求弓形AmC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

30、如图,已知直线a,b与直线c相交,下列条件中不能判定直线a与直线b平行的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

40、尺规作图:如图,已知直线BC及其外一点P,利用尺规过点P作直线BC的平行线.(用两种方法,不要求写作法,但要保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:DE∥BC,AB=14,AC=18,AE=10,则AD的长为(  )
A、
9
70
B、
70
9
C、
5
126
D、
126
5

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,已知直线AB∥CD,∠1=50°,则∠2=
50
度.

查看答案和解析>>

同步练习册答案