精英家教网 > 初中数学 > 题目详情

【题目】两块等腰直角三角形纸片AOBCOD按图所示放置,直角顶点重合在点O处,AB25.保持纸片AOB不动,将纸片COD绕点O逆时针旋转α(0°α90°)角度,如图所示.

(1)在图中,求证:ACBD,且ACBD

(2)BDCD在同一直线上(如图③)时,若AC7,求CD的长.

【答案】(1)见解析;(2)17

【解析】试题分析:1)如图2中,延长BDOAG,交ACE.只要证明△AOC≌△BOD即可解决问题.
2)如图3中,在ABC中,利用勾股定理求出,再根据即可解决问题.

试题解析:(1)证明:如图2中,延长BDOAG,交ACE.

∵∠AOB=COD=

∴∠AOC=DOB

在△AOC和△BOD中,

∴△AOC≌△BOD

AC=BDCAO=DBO

∵∠DBO+GOB=

∵∠OGB=AGE

∴∠CAO+AGE=

∴∠AEG=

BDAC.

(2)如图3中, AOC≌△BOD

BDCD在同一直线上,BDAC

∴△ABC是直角三角形,

解得

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将-2,-1,0,1,2,3,4,5,6,7这10个数分别填写在五角星中每两条线的交点处(每个交点处只填写一个数),将每一条线上的4个数相加,共得5个数,设为a1,a2,a3,a4,a5.

(1)求(a1+a2+a3+a4+a5)的值;

(2)交换其中任何两位数的位置后,(a1+a2+a3+a4+a5)的值是否改变?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=﹣x2+2x+3与x轴交于A,B两点,点A在点B的左侧.
(1)求A,B两点的坐标和此抛物线的对称轴;
(2)设此抛物线的顶点为C,点D与点C关于x轴对称,求四边形ACBD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1如图1,已知:在ABC中,BAC90°AB=AC,直线m经过点ABD直线m, CE直线m,垂足分别为点DE.证明:DE=BD+CE.

2 如图2,将1中的条件改为:在ABC中,AB=ACDAE三点都在直线m,并且有BDA=AEC=BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

3拓展与应用:如图3DEDAE三点所在直线m上的两动点(DAE三点互不重合),FBAC平分线上的一点,ABFACF均为等边三角形,连接BDCE,BDA=AEC=BAC,试判断DEF的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)(x﹣1)(x+1)=x2﹣1,

(x﹣1)(x2+x+1)=x3﹣1,

(x﹣1)(x3+x2+x+1)=   

猜想:(x﹣1)(xn+xn1+…+x2+x+1)=   

(2)根据以上结果,试写出下面两式的结果

①(x﹣1)(x49+x48+…+x2+x+1)=   

②(x20﹣1)÷(x﹣1)=   

(3)利用以上结论求值:1+3+32+33+34+……+32017

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在ABC中,AB=AC

1)若DAC的中点,BD把三角形的周长分为24cm30cm两部分,求ABC三边的长;

2)若DAC上一点,试说明ACBD+DC)。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,BD,CE分别是∠ABC,ACB平分线,BD,CE相交于点P.

(1)如图1,如果∠A=60°,ACB=90°,则∠BPC= 

(2)如图2,如果∠A=60°,ACB不是直角,请问在(1)中所得的结论是否仍然成立?若成立,请证明:若不成立,请说明理由.

(3)小月同学在完成(2)之后,发CD、BE、BC三者之间存在着一定的数量关系,于是她在边CB上截取了CF=CD,连接PF,可证CDP≌△CFP,请你写出小月同学发现,并完成她的说理过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果关于x的函数y=ax2+(a+2)x+a+1的图象与x轴只有一个公共点,求实数a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD绕点A顺时针旋转到矩形AB'C'D'的位置,旋转角为(0°<<90°).若∠1=112°,则∠的大小是( )

A. 22° B. 20° C. 28° D. 68°

查看答案和解析>>

同步练习册答案