精英家教网 > 初中数学 > 题目详情
15.如图,在平面直角坐标系中,x轴上有一点A(a,0),其中a<0,以OA为边长作正方形ABCO,边AB与BC分别交双曲线y=$\frac{k}{x}$第二象限中的一支于点D、E,延长EO交双曲线的另一支于点F,连接DF.
(1)求证:AD=CE;
(2)判断DE、EF、DF三边存在何种数量关系,用一个等式表示,并说明理由.

分析 (1)连接OD,根据正方形的性质得到OA=OC,根据反比例函数的性质得到S△AOD=S△COE,于是得到结论;
(2)设D(a,b),则E(-b,-a),F(b,a),根据两点间的距离公式得到DE2=(a+b)2+(b+a)2=2(a+b)2,DF2=(a-b)2+(b-a)2=2(a-b)2,EF2=(-b-b)2+(-a-a)2=4a2+4b2,于是得到结论.

解答 解:(1)连接OD,
∵四边形ABCO是正方形,
∴OA=OC,
∵D,E在双曲线上,
∴S△AOD=S△COE
∴$\frac{1}{2}$OA•AD=$\frac{1}{2}$OC•CE,
∴AD=CE;
(2)DE2+DF2=EF2
设D(a,b),则E(-b,-a),F(b,a),
∵DE2=(a+b)2+(b+a)2=2(a+b)2,DF2=(a-b)2+(b-a)2=2(a-b)2,EF2=(-b-b)2+(-a-a)2=4a2+4b2
∴DE2+DF2=4a2+4b2
∴DE2+DF2=EF2

点评 本题考查了反比例函数的性质,三角形的面积公式,正方形的性质,两点间的距离公式,正确的识别图形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

6.在等式y=kx+b中,当x=1时,y=-2;当x=-1时,y=-4;则$\frac{b}{k}$的值是-3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.在Rt△ABC中,∠C=90°,∠A=30°,∠A、∠B、∠C的对边分别是a、b、c,则下列结论错误的是(  )
A.c=2aB.a2+b2=c2C.a:b=1:$\sqrt{3}$D.b2=2a2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.在Rt△ABC中,∠ACB=90°,BC=3,AB=5,下列结论正确的是(  )
A.sinA=$\frac{4}{5}$B.tanA=$\frac{3}{5}$C.cosB=$\frac{3}{5}$D.tanB=$\frac{4}{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,在正方形ABCD中,点E在CD的延长线上,且CE=CA,连接AE,过点C作CF⊥AE于点F,连接BF.如果AB=4,则BF2的值为16+8$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,在矩形ABCD中,E为BC上一点,AE⊥DE,∠DAE=30°,若DE=m+n.且m,n满足m=$\sqrt{n-8}$+$\sqrt{16-2n}$+2.则BE的长为15.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.小华从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟,则他家到学校的路程是(  )
A.35kmB.20kmC.18kmD.15km

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得
AM的长为1.2km,则M,C两点间的距离为(  )
A.0.5 kmB.0.6 kmC.0.9 kmD.1.2 km

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.冬季来临很多河流进入枯水期,某地趁此机会对河堤进行了加固,该地某建筑队在河堤加固的工程中出色完成任务,这是记者与建筑队工程指挥员的一段对话:
记者:你们是用9天完成4800米长的大坝加固任务?
指挥员:是的,我们加固600米后,采用新的加固模式,这样每天加固长度是原来的2倍.
通过这段对话,请你求出该建筑队原来每天加固的米数.

查看答案和解析>>

同步练习册答案