精英家教网 > 初中数学 > 题目详情
7.已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论:①DF⊥AB;②CG=2GA;③CG=DF+GE;④S四边形BFGC=$\sqrt{3}-1$中,说法正确的是(  )
A.①③④B.②③C.①③D.①②③

分析 ①由四边形ABCD是菱形,得出对角线平分对角,求得∠GAD=∠2,得出AG=GD,AE=ED,由SAS证得△AFG≌△AEG,得出∠AFG=∠AEG=90°,即可得出①正确;
②由DF⊥AB,F为边AB的中点,证得AD=BD,证出△ABD为等边三角形,得出∠BAC=∠1=∠2=30°,由AC=2AB•cos∠BAC,AG=$\frac{AF}{cos∠BAC}$,求出AC,AG,即可得出②正确;
③由勾股定理求出DF=$\sqrt{A{D}^{2}-A{F}^{2}}$,由GE=tan∠2•ED求出GE,即可得出③正确;
④由S四边形BFGC=S△ABC-S△AGF求出数值,即可得出④不正确.

解答 解:∵四边形ABCD是菱形,
∴∠FAG=∠EAG,∠1=∠GAD,AB=AD,
∵∠1=∠2,
∴∠GAD=∠2,
∴AG=GD,
∵GE⊥AD,
∴GE垂直平分AD,
∴AE=ED,
∵F为边AB的中点,
∴AF=AE,
在△AFG和△AEG中,
$\left\{\begin{array}{l}{AF=AE}\\{∠FAG=∠EAG}\\{AG=AG}\end{array}\right.$,
∴△AFG≌△AEG(SAS),
∴∠AFG=∠AEG=90°,
∴DF⊥AB,
∴①正确;

∵DF⊥AB,F为边AB的中点,
∴AF=$\frac{1}{2}$AB=1,AD=BD,
∵AB=AD,
∴AD=BD=AB,
∴△ABD为等边三角形,
∴∠BAD=∠BCD=60°,
∴∠BAC=∠1=∠2=30°,
∴AC=2AB•cos∠BAC=2×2×$\frac{\sqrt{3}}{2}$=2$\sqrt{3}$,
AG=$\frac{AF}{cos∠BAC}$=$\frac{1}{\frac{\sqrt{3}}{2}}$=$\frac{2\sqrt{3}}{3}$,
∴CG=AC-AG=2$\sqrt{3}$-$\frac{2\sqrt{3}}{3}$=$\frac{4\sqrt{3}}{3}$,
∴CG=2GA,
∴②正确;

∵GE垂直平分AD,
∴ED=$\frac{1}{2}$AD=1,
由勾股定理得:DF=$\sqrt{A{D}^{2}-A{F}^{2}}$=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$,
GE=tan∠2•ED=tan30°×1=$\frac{\sqrt{3}}{3}$,
∴DF+GE=$\sqrt{3}$+$\frac{\sqrt{3}}{3}$=$\frac{4\sqrt{3}}{3}$=CG,
∴③正确;

∵∠BAC=∠1=30°,
∴△ABC的边AC上的高等于AB的一半,即为1,
FG=$\frac{1}{2}$AG=$\frac{\sqrt{3}}{3}$,
S四边形BFGC=S△ABC-S△AGF=$\frac{1}{2}$×2$\sqrt{3}$×1-$\frac{1}{2}$×1×$\frac{\sqrt{3}}{3}$=$\sqrt{3}$-$\frac{\sqrt{3}}{6}$=$\frac{5\sqrt{3}}{6}$,
∴④不正确;
故选:D.

点评 本题考查了菱形的性质、全等三角形的判定与性质、勾股定理、三角函数、线段垂直平分线的性质、含30°角的直角三角形的性质等知识;本题综合性强,有一定难度.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

17.如图,正△ABC的边长是2,分别以点B、C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当$\sqrt{2}≤r<2$时,S的取值范围是(  )
A.$\frac{π}{2}$-1≤S<$\frac{4π}{3}$-$\sqrt{3}$B.$\frac{π}{2}$-1≤S<$\frac{4π}{3}$-1C.1≤S<$\sqrt{3}$D.$\sqrt{3}≤S$$<2\sqrt{3}$-1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.若关于x的不等式(a+1)x>a+1的解集为x>1,则a的取值范围是a>-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,AD是⊙O的切线,切点为A,AB是⊙O的弦,过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D,连接AO并延长AO交BC于点M,交$\widehat{BC}$于点E,交过点C的直线于点P,且∠BCP=∠ACD.
(1)求证:∠BAP=∠CAP;
(2)判断直线PC与⊙O的位置关系,并说明理由;
(3)若AB=9,BC=6,求PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下列图形中,既是轴对称图形又是中心对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:(x+3)(x-5)-x(x-2).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.实数a的相反数是(  )
A.aB.-aC.$\frac{1}{a}$D.|a|

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.下列各式1)$\sqrt{\frac{1}{5}}$,2)$\sqrt{-5}$,3)-$\sqrt{{x}^{2}+2}$,4)$\sqrt{4}$,5)$\sqrt{(-\frac{1}{3})^{2}}$,6)$\sqrt{1-a}$,7)$\sqrt{{a}^{2}-2a+1}$,其中是二次根式的是1),3),4),5),7)(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.下列计算正确的是(  )
A.$\root{3}{-25}$=-5B.$\root{3}{1\frac{1}{8}}$=1$\frac{1}{2}$C.$\root{3}{125}$=5D.-$\root{3}{-\frac{8}{27}}$=-$\frac{2}{3}$

查看答案和解析>>

同步练习册答案