精英家教网 > 初中数学 > 题目详情
13.已知$\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$和$\left\{\begin{array}{l}{x=-3}\\{y=4}\end{array}\right.$是关于x,y的二元一次方程:ax+by=1的两个解,求$\sqrt{{a}^{2}}$-$\sqrt{{b}^{2}}$的值.

分析 根据方程的解满足方程,可得关于a,b的方程组,根据解方程组,可得答案.

解答 解:由题意,得
$\left\{\begin{array}{l}{a-2b=1①}\\{-3a+4b=1②}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=-3}\\{b=-2}\end{array}\right.$,
$\sqrt{{a}^{2}}$-$\sqrt{{b}^{2}}$=3-2=1.

点评 本题考查了二元一次方程的解,利用方程的解满足方程得出关于a,b的方程组是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.已知,点A(4,3),B(3,1),C(1,2).
(1)在平面直角坐标系中分别描出A,B,C三点,并顺次连接成△ABC;
(2)将△ABC向左平移6个单位,再向下平移5个单位得到△A1B1C1;画出△A1B1C1,并写出点A1,B1,C1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.一辆出租车从超市出发,向东走4千米到达小丽家,然后向西走2千米到达小华家,又向西走6千米达到小敏家,最后回到超市.

(1)以超市为原点,规定向东为正方向,用1个单位长度表示1千米,你能在数轴上标出小丽家,小华家和小敏家的位置吗?
(2)出租车一共行驶了多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.问题提出
(1)如图1,将直角三角板的直角顶点P放在正方形ABCD的对角线AC上,一条直角边经过点B,另一条直角边交边DC于点E,线段PB和线段PE相等吗?请证明;
问题探究
(2)如图2,移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交DC的延长线于点E,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;
问题解决
(3)继续移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交DC的延长线于点E,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.(1)如图,在四边形ABCD中,∠A=104°-∠2,∠ABC=76°+∠2,BD⊥CD于D,EF⊥CD于F.
求证:∠1=∠2.
请你完成下面证明过程.
证明:因为∠A=104°-∠2,∠ABC=76°+∠2,
所以:∠A+∠ABC=104°-∠2+76°+∠2,即∠A+∠ABC=180°
所以AD∥BC,(同旁内角互补,两直线平行)
所以∠1=∠DBC,(两直线平行,内错角相等)
因为BD⊥DC,EF⊥DC,
所以∠BDC=90°,∠EFC=90°,(垂线的定义)
所以∠BDC=∠EFC,
所以BD∥EF,(同位角相等,两直线平行)
所以∠2=∠DBC,(两直线平行,同位角相等)
所以∠1=∠2(等量代换).
(2)如图,已知∠ABC=180°-∠A,BD⊥CD于D,EF⊥CD于F,①求证:AD∥BC.
②若∠1=36°,求∠2的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,在?ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为2$\sqrt{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(-2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B.
(1)求抛物线的函数表达式;
(2)经过B,C的直线l平移后与抛物线交于点M,与x轴交于点N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.                            运动员甲测试成绩表
测试序号12345678910
成绩(分)7687758787

(1)写出运动员甲测试成绩的众数和中位数;
(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S2=0.8、S2=0.4、S2=0.8)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是x<3.

查看答案和解析>>

同步练习册答案