精英家教网 > 初中数学 > 题目详情

在正五边形ABCDE中,对角线AC、BE交于F点.

求证:CF2=CA·AF.

答案:
解析:

作正五边形ABCDE的外接圆⊙O,如图所示.∵五边形ABCDE是正五边形,圆周,即的度数都等于

∴∠BAC=∠ACB=∠ABF=,∴△ABF∽△ACB,∴AF∶AB=AB∶AC,∴AB2=CA·AF.在△CBF中,∠BCF=36°,∠CBF=72°,∴∠BFC=180°-∠BCF-∠CBF=72°,∴CF=CB,又AB=CB,∴CF=AB,∴CF2=CA·AF.


提示:

在解决有关正多边形的问题中,可以利用正多边形与圆的特殊关系,作出正多边形的外接圆或内切圆,再利用正多边形的一些性质,将会得到一些结论,为进一步的证明提供很多条件.因此,作正多边形的外接圆或内切圆是常用到的辅助线.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、问题背景:某课外学习小组在一次学习研讨中,得到了如下命题:
如图①,在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若CM=DN,则∠BON=108°.
该小组提出了一个大胆的猜想:如图②,在正五边形ABCDE中,M、N分别是DE、EA上的点,BM与CN相交于点O,若DM=EN,则∠BON=108°.
请问他们的猜想是否正确?若正确,请写出解答过程;若不正确,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

问题背景:某课外学习小组在一次学习研讨中,得到了如下两个命题:
精英家教网精英家教网
①如图1,在正三角形ABC中,M,N分别是AC,AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;
②如图2,在正方形ABCD中,M,N分别是CD,AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.
然后运用类比的思想提出了如下命题;
③如图3,在正五边形ABCDE中,M,N分别是CD,DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:
(1)请你从①,②,③三个命题中选择一个进行证明;
(2)请你继续完成下面的探索:
①如图4,在正n(n≥3)边形ABCDEF…中,M,N分别是CD,DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立;(不要求证明)
②如图5,在正五边形ABCDE中,M,N分别是DE,AE上的点,BM与CN相交于点O,若∠BON=108°时,试问结论BM=CN是否还成立.若成立,请给予证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

知识回顾:
(1)如图1,在△ABC中,点D、E、F分别是边AB、BC、AC的中点,我们把△DEF称为△ABC的中点三角形.则S△DEF:S△ABC=
 

(2)如图2,在正方形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,我们把四边形EFGH称为正方形ABCD的中点四边形,此时四边形EFGH的形状是
 
,S四边形EFGH:S四边形ABCD=
 

(3)实践探究:
如图3,在正五边形ABCDE中,若点F、G、H、M、N分别是边AB、BC、CD、DE、EA的中点,则中点五边形FGHMN的形状是
 
;若正五边形ABCDE的中心为点O,连接OE、ON,求S五边形FGHMN:S五边形ABCDE的值.
精英家教网
(4)拓展归纳:
在正n边形A1A2 …An中,若点B1、B2 …Bn分别是边A1A2、A2A3、…、AnA1的中点,则中点n边形B1B2 …Bn的面积与正n边形A1A2 …An的面积之比为Sn边形B1B2BnSn边形A1A2An=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图,在正五边形ABCDE中,对角线AD,AC与EB分别相交于点M,N.下列结论错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•台湾)如图,甲、乙两人想在正五边形ABCDE内部找一点P,使得四边形ABPE为平行四边形,其作法如下:
(甲) 连接BD、CE,两线段相交于P点,则P即为所求
(乙) 先取CD的中点M,再以A为圆心,AB长为半径画弧,交AM于P点,则P即为所求.
对于甲、乙两人的作法,下列判断何者正确?(  )

查看答案和解析>>

同步练习册答案