精英家教网 > 初中数学 > 题目详情
精英家教网如图,将正方形ABCD折叠,使点C与点D重合于正方形内点P处,折痕分别为AF、BE,如果正方形ABCD的边长是2,那么△EPF的面积是
 
分析:过P作PH⊥DC于H,交AB于G,由正方形的性质得到AD=AB=BC=DC=2;∠D=∠C=90°;再根据折叠的性质有PA=PB=2,∠FPA=∠EPB=90°,可判断△PAB为等边三角形,利用等边三角形的性质得到∠APB=60°,PG=
3
2
AB=
3
,于是∠EPF=120°,PH=HG-PG=2-
3
,得∠HEP=30°,然后根据含30°的直角三角形三边可求出HE,得到EF,最后利用三角形的面积公式计算即可.
解答:精英家教网解:过P作PH⊥DC于H,交AB于G,如图,
则PG⊥AB,
∵四边形ABCD为正方形,
∴AD=AB=BC=DC=2;∠D=∠C=90°,
又∵将正方形ABCD折叠,使点C与点D重合于形内点P处,
∴PA=PB=2,∠FPA=∠EPB=90°,
∴△PAB为等边三角形,
∴∠APB=60°,PG=
3
2
AB=
3

∴∠EPF=120°,PH=HG-PG=2-
3

∴∠HEP=30°,
∴HE=
3
PH=
3
(2-
3
)=2
3
-3,
∴EF=2HE=4
3
-6,
∴△EPF的面积=
1
2
FE•PH=
1
2
(2-
3
)(4
3
-6)
=7
3
-12.
故答案为7
3
-12.
点评:本题考查了折叠的性质:折叠前后的两图形全等,即对应角相等,对应线段相等.也考查了正方形和等边三角形的性质以及含30°的直角三角形三边的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

探究问题:
(1)方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:
AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,∴∠1+∠3=45°.
即∠GAF=∠
 

又AG=AE,AF=AF
∴△GAF≌
 

 
=EF,故DE+BF=EF.
(2)方法迁移:
如图②,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=
1
2
∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.
(3)问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足∠EAF=
1
2
∠DAB,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将正方形纸片按图甲中的虚线对折得到图乙,再对折得到图丙,在图丙中沿虚线将△ABC(AB≠BC)剪下,再将△ABC展开铺平所得图形是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图,四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如果AF=4,AB=7:
①写出图中的旋转过程;
②求BE的长;
③在图中作出延长BE与DF的交点G,并说明BG⊥DF.
(2)如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕点B按顺时针转动一个角度到A1BC1的位置,使得点A、B、C1在同一条直线上,那么这个角度等于
A
A

A.120°    B.90°  C.60°     D.30°.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,将三角形ABC进行平移,使点A的对应点为点A′
(1)请你画出平移后所得的三角形A′B′C′(画图工具不限).
(2)若每个小正方形的面积为1,求线段AC在平移中扫过的面积.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年江苏省盐城市建湖县近湖中学九年级(上)数学周练作业(4)(解析版) 题型:解答题

探究问题:
(1)方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:
AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,∴∠1+∠3=45°.
即∠GAF=∠______.
又AG=AE,AF=AF
∴△GAF≌______.
∴______=EF,故DE+BF=EF.

(2)方法迁移:
如图②,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.

(3)问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足∠EAF=∠DAB,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).

查看答案和解析>>

同步练习册答案