精英家教网 > 初中数学 > 题目详情
已知:如图,⊙O1与⊙O2外切于点P,AB为⊙O1、⊙O2的外公切线,切点分别为A、B,连心线O1O2分别交⊙O1于D、交AB于C,连接AD、AP、BP.求证:(1)AD∥BP;(2)CP•CO1=CD•CO2;(3)
AD
AP
=
PC
BC

精英家教网
分析:(1)根据圆的切线的性质即可证得∠APB=∠DAP,即可证得两直线平行;
(2)利用平行线分线段成比例定理即可证明;
(3)首先证明△DAP∽△APB,和△CPA∽△CBP,即可求证.
解答:精英家教网证明:(1)过P作两圆的内公切线PE交AB于E,
∵EA、EP为⊙O1的切线,
∴EA=EP,
同理:EB=EP,
∴∠APB=90°,
∵PD是⊙O1的直径,
∴∠DAP=90°,
∴∠APB=∠DAP,
∴AD∥BP;

(2)由(1)知:AD∥BP?
CP
CD
=
CB
CA

连接O1A、O2B,AB分别切两圆于A、B,
O1A⊥AB
O2B⊥AB
?O1A
O2B?
CO2
CO1
=
CB
CA

CP
CD
=
CO2
CO1

∴CP•CO1=CD•CO2

(3)由(1)知:∠DAP=∠APB,
又AB是⊙O1的切线,AP是⊙O1的弦,
∴∠D=∠PAB,
∴△DAP∽△APB,
AD
AP
=
AP
BP

又∵
AD||BP?∠BPC=∠D
∠PAC=∠PAB=∠D
?
∠BPC=∠PAC
∠C=∠C
=△CPA
△CBP?
AP
BP
=
PC
BC

AD
AP
=
PC
BC
点评:本题主要考查了切线的性质,以及三角形相似的判定,线段的比相等的问题一般可以转化为证明三角形相似的问题解决.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知;如图,⊙O1与⊙O2内切于点A,⊙O2的直径AC交⊙O1于点B,⊙O2的弦FC切⊙精英家教网O1于点D,AD的延长线交⊙O2于点E,连接AF、EF、BD.
(1)求证:AC•AF=AD•AE;
(2)若O1O2=9,cos∠BAD=
23
,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,⊙O1与⊙O2外切于C点,AB一条外公切线,A、B分别为切点,连接AC、BC.设⊙O1的半径为R,⊙O2的半径为r,若tan∠ABC=
2
,则
R
r
的值为(  )
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•南京)已知,如图,⊙O1与⊙O2相交,点P是其中一个交点,点A在⊙O2上,AP的延长线交⊙O1于点B,AO2的延长线交⊙O1于点C、D,交⊙O2于点E,连接PC、PE、PD,且
PC
PD
=
CE
DE
,过A作⊙O1的切线AQ,切点为Q.求证:
(1)∠CPE=∠DPE;
(2)AQ2-AP2=PC•PD.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,⊙O1与⊙O2外切于A点,直线l与⊙O1、⊙O2分别切于B,C点,若⊙O1的半径r1=2cm,⊙O2的半径r2=3cm.求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,⊙O1与⊙O2相交于A、B,若两圆半径分别为12和5,O1O2=13,则AB=
120
13
120
13

查看答案和解析>>

同步练习册答案