2£®Èçͼ£¬ÒÑÖªÒ»´Îº¯Êýy=$\frac{1}{2}$x+1µÄͼÏóÓëxÖá½»ÓÚµãA£¬ÓëyÖá½»ÓÚµãB£¬¶þ´Îº¯Êýy=$\frac{1}{2}$x2+bx+cµÄͼÏóÓëÒ»´Îº¯Êýy=$\frac{1}{2}$x+1µÄͼÏó½»ÓÚµãB¡¢CÁ½µã£¬ÓëxÖá½»ÓÚD¡¢EÁ½µã£¬ÇÒDµã×ø±êΪ£¨1£¬0£©£®
£¨1£©Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÔÚÔÚxÖáÉÏÓÐÒ»¶¯µãP£¬´ÓOµã³ö·¢ÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÑØxÖáÏòÓÒÔ˶¯£¬ÊÇ·ñ´æÔÚ¶¯µãP£¬Ê¹µÃ¡÷PBCÊÇÒÔPΪֱ½Ç¶¥µãµÄÖ±½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³öµãPÔ˶¯Ê±¼ätµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©Èô¶¯µãPÔÚxÖáÉÏ£¬¶¯µãQÔÚÉäÏßACÉÏ£¬Í¬Ê±´ÓAµã³ö·¢£¬µãPÑØxÖáÕý·½ÏòÒÔÿÃë2¸öµ¥Î»µÄËÙ¶ÈÔ˶¯£¬µãQÒÔÿÃëa¸öµ¥Î»µÄËÙ¶ÈÑØÉäÏßACÔ˶¯£¬ÊÇ·ñ´æÔÚÒÔA¡¢P¡¢QΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ABDÏàËÆ£¿Èô´æÔÚ£¬ÇóaµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾ÝÒ»´Îº¯ÊýµÄ½âÎöʽ¿ÉÕÒ³öµãBµÄ×ø±ê£¬ÔÙ¸ù¾ÝµãA¡¢DµÄ×ø±êÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇó³ö¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©¼ÙÉè´æÔÚ£¬ÔòµãPµÄ×ø±êΪ£¨t£¬0£©£®ÁªÁ¢Ö±ÏßÓëÅ×ÎïÏß½âÎöʽ³É·½³Ì×飬½â·½³Ì×éÇó³öµãCµÄ×ø±ê£¬¸ù¾ÝµãB¡¢PµÄ×ø±êÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽ¼´¿ÉÇó³öPB¡¢PC¡¢BCµÄ³¤¶È£¬ÔÙÀûÓù´¹É¶¨Àí¼´¿ÉµÃ³ö¹ØÓÚtµÄÒ»Ôª¶þ´Î·½³Ì£¬½â·½³Ì¼´¿ÉµÃ³ö½áÂÛ£»
£¨3£©¼ÙÉè´æÔÚ£¬ÔòAP=2t£¬AQ=at£®ÓÉÒ»´Îº¯Êý½âÎöʽ¼´¿ÉÕÒ³öµãAµÄ×ø±ê£¬½áºÏµãB¡¢DµÄ×ø±ê¼´¿ÉµÃ³öAB¡¢ADµÄ³¤¶È£¬·Ö¡÷PAQ¡×BADºÍ¡÷PAQ¡×¡÷DABÁ½ÖÖÇé¿ö¿¼ÂÇ£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖʼ´¿ÉµÃ³ö¹ØÓÚaµÄÒ»ÔªÒ»´Î·½³Ì£¬½â·½³Ì¼´¿ÉÇó³öaÖµ£¬´ËÌâµÃ½â£®

½â´ð ½â£º£¨1£©µ±x=0ʱ£¬y=1£¬
¡àB£¨0£¬1£©£®
½«µãB£¨0£¬1£©¡¢D£¨1£¬0£©´úÈëy=$\frac{1}{2}$x2+bx+cÖУ¬
$\left\{\begin{array}{l}{c=1}\\{\frac{1}{2}+b+c=0}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{b=-\frac{3}{2}}\\{c=1}\end{array}\right.$£¬
¡à¶þ´Îº¯ÊýµÄ½âÎöʽΪy=$\frac{1}{2}$x2-$\frac{3}{2}$x+1£®
£¨2£©¼ÙÉè´æÔÚ£¬ÔòµãPµÄ×ø±êΪ£¨t£¬0£©£®
ÁªÁ¢Ö±ÏßABÓëÅ×ÎïÏߵĽâÎöʽ³É·½³Ì×飬
$\left\{\begin{array}{l}{y=\frac{1}{2}x+1}\\{y=\frac{1}{2}{x}^{2}-\frac{3}{2}x+1}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{{x}_{1}=0}\\{{y}_{1}=0}\end{array}\right.$£¬$\left\{\begin{array}{l}{{x}_{2}=4}\\{{y}_{2}=3}\end{array}\right.$£¬
¡àµãCµÄ×ø±êΪ£¨4£¬3£©£®
¡ßB£¨0£¬1£©£¬P£¨t£¬0£©£¬
¡àBC=2$\sqrt{5}$£¬CP=$\sqrt{£¨4-t£©^{2}+£¨3-0£©^{2}}$=$\sqrt{{t}^{2}-8t+25}$£¬BP=$\sqrt{£¨t-0£©^{2}+£¨0-1£©^{2}}$=$\sqrt{{t}^{2}+1}$£¬
¡ßÔÚRt¡÷PBCÖУ¬¡ÏBPC=90¡ã£¬
¡àBC2=CP2+BP2£¬¼´20=t2-8t+25+t2+1£¬
½âµÃ£ºt1=1£¬t2=3£®
¹Ê´æÔÚ¶¯µãP£¬Ê¹µÃ¡÷PBCÊÇÒÔPΪֱ½Ç¶¥µãµÄÖ±½ÇÈý½ÇÐΣ¬´ËʱµãPÔ˶¯µÄʱ¼äΪ1Ãë»ò3Ã룮
£¨3£©¼ÙÉè´æÔÚ£¬ÔòAP=2t£¬AQ=at£®
µ±y=0ʱ£¬x=-2£¬
¡àA£¨-2£¬0£©£®
¡ßB£¨0£¬1£©¡¢D£¨1£¬0£©£¬
¡àAB=$\sqrt{5}$£¬AD=3£®
¡ß¡ÏPAQ=¡ÏBAD£¬
¡àÒÔA¡¢P¡¢QΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ABDÏàËÆÓÐÁ½ÖÖÇé¿ö£º
¢Ùµ±¡÷PAQ¡×BADʱ£¬ÓÐ$\frac{AP}{AB}=\frac{AQ}{AD}$£¬¼´$\frac{2t}{\sqrt{5}}=\frac{at}{3}$£¬
½âµÃ£ºa=$\frac{6\sqrt{5}}{5}$£»
¢Úµ±¡÷PAQ¡×¡÷DABʱ£¬ÓÐ$\frac{AP}{AD}=\frac{AQ}{AB}$£¬¼´$\frac{2t}{3}=\frac{at}{\sqrt{5}}$£¬
½âµÃ£ºa=$\frac{2\sqrt{5}}{3}$£®
×ÛÉÏ¿ÉÖª£º´æÔÚÒÔA¡¢P¡¢QΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ABDÏàËÆ£¬aµÄֵΪ$\frac{6\sqrt{5}}{5}$»ò$\frac{2\sqrt{5}}{3}$£®

µãÆÀ ±¾Ì⿼²éÁËÒ»´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¡¢´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ¡¢¹´¹É¶¨ÀíÒÔ¼°ÏàËÆÈý½ÇÐεÄÐÔÖÊ£¬½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©ÀûÓôý¶¨ÏµÊý·¨Çó³ö¶þ´Îº¯Êý½âÎöʽ£»£¨2£©ÀûÓù´¹É¶¨ÀíÕÒ³ö¹ØÓÚtµÄÒ»Ôª¶þ´Î·½³Ì£»£¨3£©·Ö¡÷PAQ¡×BADºÍ¡÷PAQ¡×¡÷DABÁ½ÖÖÇé¿ö¿¼ÂÇ£®±¾ÌåÊôÓÚÖеµÌ⣬ÄѶȲ»´ó£¬½â¾ö¸ÃÌâÐÍÌâĿʱ£¬¸ù¾ÝµãµÄ×ø±êÀûÓôý¶¨ÏµÊý·¨Çó³öº¯Êý½âÎöʽÊǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Á½¸öÓÐÀíÊýµÄ²îÒ»¶¨Ð¡ÓÚ±»¼õÊýB£®-aÒ»¶¨ÊǸºÊý
C£®Á½¸ö¸ºÊý£¬¾ø¶ÔÖµ´óµÄ·´¶øСD£®Á½¸öÓÐÀíÊýµÄºÍÒ»¶¨´óÓÚ¼ÓÊý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®¼ÆË㣺$\frac{\sqrt{5}¡Á\sqrt{15}}{\sqrt{3}}$$+\frac{1}{\sqrt{5}-1}$µÄ½á¹ûÊÇ$\frac{\sqrt{5}+21}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èçͼ£¬µãM¡¢N·Ö±ðÔÚÕý¶à±ßÐÎÏàÁÚµÄÁ½±ßÉÏ£¬ÇÒBM=CN£¬AM½»BNÓÚµãP£®Èçͼ1£¬ÔڵȱßÈý½ÇÐÎABCÖУ¬¡ÏAPN=60¡ã£¬Èçͼ2£¬ÔÚÕý·½ÐÎABCDÖУ¬¡ÏAPN=90¡ã£¬Èçͼ3£¬ÔÚÕýÎå±ßÐÎABCDEÖУ¬¡ÏAPN=108¡ã£¬ÒÀ´Î¹æÂÉ£¬ÔÚÕý°Ë±ßÐÎÖУ¬¡ÏAPN=135¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÓÃ11µ½2014ÕâЩ×ÔÈ»ÊýÒÀ´Î×é³ÉÏÂÁÐËãʽ£º1112+1314£¬1516+1718£¬1920+2122£¬2324+2526£¬¡­£¬20112012+20132014£®ÆäÖУ¬ÖµÄܱ»4Õû³ýµÄËãʽÓУ¨¡¡¡¡£©
A£®0¸öB£®125¸öC£®250¸öD£®499¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬¾ØÐÎABCDµÄ¶¥µãAÓë×ø±êÔ­µãOÖغϣ¬B£¨4£¬0£©£¬D£¨0£¬3£©£¬µãE´ÓµãA³ö·¢£¬ÑØÉäÏßABÒƶ¯£¬ÒÔCEΪֱ¾¶×÷¡ÑM£¬µãFΪ¡ÑMÓëÉäÏßDBµÄ¹«¹²µã£¬Á¬½ÓEF¡¢CF£¬¹ýµãE×÷EG¡ÍEF£¬EGÓë¡ÑMÏཻÓÚµãG£¬Á¬½ÓCG£®
£¨1£©ÊÔ˵Ã÷ËıßÐÎEFCGÊǾØÐΣ»
£¨2£©Çótan¡ÏCEGµÄÖµ£»
£¨3£©µ±¡ÑMÓëÉäÏßDBÏàÇÐʱ£¬µãEÍ£Ö¹Òƶ¯£¬ÔÚµãEÒƶ¯µÄ¹ý³ÌÖУº
¢Ù·Ö±ðÇóµãMºÍµãGÔ˶¯µÄ·¾¶³¤£»
¢Úµ±¡÷BCG³ÉΪµÈÑüÈý½ÇÐÎʱ£¬Ö±½Óд³öµãG×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Èçͼ£¬Õý·½ÐÎABCDÖУ¬µãE£¬F·Ö±ðÔÚBC¡¢DCÉÏ£¬¡ÏEAF=45¡ã£¬AE£¬AF·Ö±ð½»BDÓÚG£¬H£¬ÏÂÁнáÂÛ
£¨1£©EF=BE+DF£»
£¨2£©GH2=BG2+HD2£»
£¨3£©¡ÏAHE=90¡ã£»
£¨4£©ÈôBE=2£¬CF=3£¬ÔòS¡÷AEF=15£»
ÆäÖÐÕýÈ·½áÂÛÓУ¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®·É»úÿСʱ·ÉÐÐ6¡Á103ǧÃ×£¬¹âµÄËÙ¶ÈÊÇÿÃë30ÍòǧÃ×£¬Çó¹âµÄËÙ¶ÈÊÇ·É»úµÄ¶àÉÙ±¶£¿£¨ÓÿÆѧ¼ÇÊý·¨±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬AC=AD£¬BC=BD£¬ÇóÖ¤£º¡÷ABC¡Õ¡÷ABD£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸