【题目】如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.
(1)求证:∠BCA=∠BAD;
(2)求DE的长;
(3)求证:BE是⊙O的切线.
【答案】(1)见解析;(2);(3)见解析.
【解析】
试题分析:(1)根据BD=BA得出∠BDA=∠BAD,再由圆周角定理∠BCA=∠BDA即可得出结论.
(2)判断△BED∽△CBA,利用对应边成比例的性质可求出DE的长度.
(3)连接OB,OD,证明△ABO≌△DBO,推出OB∥DE,继而判断OB⊥DE,可得出结论.
试题解析:(1)证明:∵BD=BA,∴∠BDA=∠BAD.
∵∠BCA=∠BDA(圆周角定理),
∴∠BCA=∠BAD.
(2)∵∠BDE=∠CAB(圆周角定理),∠BED=∠CBA=90°,
∴△BED∽△CBA,∴.
∵BD=BA =12,BC=5,∴根据勾股定理得:AC=13.
∴,解得:.
(3)证明:连接OB,OD,
在△ABO和△DBO中,∵,
∴△ABO≌△DBO(SSS).
∴∠DBO=∠ABO.
∵∠ABO=∠OAB=∠BDC,∴∠DBO=∠BDC.∴OB∥ED.
∵BE⊥ED,∴EB⊥BO.∴OB⊥BE.
∵OB是⊙O的半径,∴BE是⊙O的切线.
科目:初中数学 来源: 题型:
【题目】如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知△ABC的顶点均为网格线的交点.
(1)将△ABC向下平移5个单位长度,再向左平移1个单位长度,画出平移后的△A1B1C1;
(2)画出△A1B1C1关于直线l轴对称的△A2B2C2;
(3)将△ABC绕点C逆时针旋转90°,画出旋转后的△A3B3C3以A、A3、B、B3为顶点的四边形的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,4),B(2,n)两点,与坐标轴分别交于M、N两点.
(1)求一次函数的解析式;
(2)根据图象直接写出不等式kx+b﹣>0的解集;
(3)求△AOB的面积;
(4)若点P在x轴上、点Q在y轴上,且以P、Q、A、B为顶点的四边形是平行四边形,请直接写出点P、Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在下列给出的条件中,能判定四边形ABCD为平行四边形的是()
A.AB=BC,CD=DAB.AB//CD,AD=BC
C.AB//CD,∠A=∠CD.∠A=∠B,∠C=∠D
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中E、F分别是边AD、BC的中点,AC分别交BE、DF于点M、N,对于下列结论:①△ABE≌△CDF;②AM=MN=NC;③EM=BM,④S△ABM=S△AME,其中正确的有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】边长为2的正方形ABCD与边长为2 的正方形AEFG按图(1)位置放置,AD与AE在同一直线上,AB与AG在同一直线上,将正方形ABCD绕点A逆时针旋转如图(2),线段DG与线段BE相交,交点为H,则△GHE与△BHD面积之和的最大值为_________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:
(1)求证:△BEF∽△DCB;
(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;
(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?试说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com