精英家教网 > 初中数学 > 题目详情
如图,已知梯形ABCO的底边AO在x轴上,BCAO,AB⊥AO,过点C的双曲线y=
k
x
交OB于D,且OD:DB=1:2,若△OBC的面积等于3,则k的值是______.
设C(x,y),BC=a.
则AB=y,OA=x+a.
过D点作DE⊥OA于E点.
∵OD:DB=1:2,DEAB,
∴△ODE△OBA,相似比为OD:OB=1:3,
∴DE=
1
3
AB=
1
3
y,OE=
1
3
OA=
1
3
(x+a).
∵D点在反比例函数的图象上,且D(
1
3
(x+a),
1
3
y),
1
3
y•
1
3
(x+a)=k,即xy+ya=9k,
∵C点在反比例函数的图象上,则xy=k,
∴ya=8k.
∵△OBC的面积等于3,
1
2
ya=3,即ya=6.
∴8k=6,k=
3
4

故答案为:
3
4

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点O是坐标原点,正比例函数y=kx的图象与双曲线y=-
2
x
交于点A,且点A的横坐标为-
2

(1)求k的值.
(2)将直线y=kx向上平移4个单位得到直线BC,直线BC分别交x轴、y轴于点B、C,如点D在直线BC上,在平面直角坐标系中求一点P,使以O、B、D、P为顶点的四边形是菱形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=ax+b的图象与反比例函数y=
k
x
的图象交于C,D两点,与坐标轴交于A、B两点,连结OC,OD(O是坐标原点).
(1)利用图中条件,求反比例函数的解析式和m的值;
(2)利用图中条件,求出一次函数的解析式;
(3)如图,写出当x取何值时,一次函数值小于反比例函数值?
(4)坐标平面内是否存在点P,使以O、D、P、C为顶点的四边形是平行四边形?若存在,直接写出P点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=-2x+b的图象与反比例函数y=
k
x
的图象交于点A(1,6)、B(3,2)两点.
(1)求b的值;
(2)求反比例函数的解析式;
(3)根据图象填空,当反比例函数小于一次函数的值时,x的取值范围是______;
(4)作AD⊥y轴,BC⊥x轴,垂足分别是D、C,五边形ABCOD的面积是14,求△ABO的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点M是反比例函数y=
1
x
在第一象限内图象上的点,作MB⊥x轴于B.过点M的第一条直线交y轴于点A1,交反比例函数图象于点C1,且A1C1=
1
2
A1M,△A1C1B的面积记为S1;过点M的第二条直线交y轴于点A2,交反比例函数图象于点C2,且A2C2=
1
4
A2M,△A2C2B的面积记为S2;过点M的第三条直线交y轴于点A3,交反比例函数图象于点C3,且A3C3=
1
8
A3M,△A3C3B的面积记为S3;以此类推…;则S1+S2+S3+…+S8=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,P是反比例函数y=
k
x
图象上一点,直线PQ交于x轴于Q点,PMX轴交y轴于M,且△OPQ是等腰直角三角形,△OPM的面积为1.
(1)求反比例函数的表达式;
(2)求Q点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,OACB是矩形,C(a,b),点D为BC中点,反比例函数y=
4
x
的图象经过点D且交AC于点E.
(1)求证:△AOE与△BOD的面积相等;
(2)求证:点E是AC的中点;
(3)当OE⊥DE时,试求OB2-OA2的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

某种蓄电池的电压为定值,使用此电源时,电流I(A)与可变电阻R(Ω)之间的函数关系如图所示,当用电器的电流为10A时,用电器的可变电阻为______Ω.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,点A是双曲线y=-
1
x
在第二象限的分支上的任意一点,点B、C、D分别是点A关于x轴、原点、y轴的对称点,则四边形ABCD的面积是______.

查看答案和解析>>

同步练习册答案