精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD中,MBC上一点,FAM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N

1)求证:△ABM∽△EFA

2)若AB=12BM=5,求DE的长.

【答案】见解析;49

【解析】

试题(1)由正方形的性质得出AB=AD∠B=90°AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;

2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的长.

试题解析:(1四边形ABCD是正方形,

∴AB=AD∠B=90°AD∥BC

∴∠AMB=∠EAF

∵EF⊥AM

∴∠AFE=90°

∴∠B=∠AFE

∴△ABM∽△EFA

2∵∠B=90°AB=12BM=5

∴AM==13AD=12

∵FAM的中点,

∴AF=AM=6.5

∵△ABM∽△EFA

∴AE=16.9

∴DE=AE-AD=4.9

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,定义点P(x,y)的变换点为P′(x+y,x﹣y).

(1)如图1,如果O的半径为

①请你判断M(2,0),N(﹣2,﹣1)两个点的变换点与O的位置关系;

②若点P在直线y=x+2上,点P的变换点P′在O的内,求点P横坐标的取值范围.

(2)如图2,如果O的半径为1,且P的变换点P′在直线y=﹣2x+6上,求点P与O上任意一点距离的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是正方形ABCD的对角线BD上一点(P不与点BD重合)PEBC于点EPFCD于点F,连接EF给出下列五个结论:APEFAPEF仅有当DAP45°67.5°时,APD是等腰三角形;④∠PFEBAPPDEC.其中有正确有(  )个.

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:关于x的二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.

(1)求二次函数的表达式;

(2)y轴上是否存在一点P,使PBC为等腰三角形.若存在,请求出点P的坐标;

(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 达点B时,点MN同时停止运动,问点MN运动到何处时,MNB面积最大,试求出最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同。

(1)从箱子中任意摸出一个球是白球的概率是多少?

(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边ABC的边长为2ADBC边上的中线,MAD上的动点,E是边AC的中点,则EM+CM的最小值为( )

A.1B.12 C.3 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从-2,-1,1,2这四个数中,任取两个不同的数作为一次函数y=kx+b的系数k,b,则一次函数y=kx+b的图象不经过第四象限的概率是 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.

(1)求证:△AEC≌△ADB;

(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知内角平分线的交点,则的面积比是(

A.B.C.D.

查看答案和解析>>

同步练习册答案