精英家教网 > 初中数学 > 题目详情
已知四边形ABCD是矩形,BC>AB,直线MN分别与AB,BC交于E,F两点,P为对角线AC上一动点(P不与A,C重合).
(1)当点E,F分别为AB,BC的中点时,(如图1)问点P在AC上运动时,点P,E,F能否构成直角三角形?若能,共有几个?请在图中画出所有满足条件的三角形.
(2)若AB=3,BC=4,P为AC的中点,当直线MN的移动时,始终保持MN∥AC,(如图2)求△PEF的面积S△PEF与FC的长x之间的函数关系式.

【答案】分析:(1)共有四个:①∠PEF=90°;②∠PFE=90°;③∠EPF=90°(两种),此种情况,可以EF为直径作圆,圆与AC的交点就是P点.
(2)由于三角形PEF的面积无法直接求出,可用三角形ABC的面积减去三角形AEP、BEF、CFP三个小三角形的和来求.
三角形BEF的面积可用三角形ABC的面积和它们的相似比来求出.
由于P是AC中点,而MN∥AC,根据等底等高的三角形面积相等可得出三角形AEP和CPF的面积相等,因此只需求出三角形FCP的面积即可.三角形PCF中,CF的长已知了为x,CF边上的高可用PC的长和∠ACB的正弦值求出.
由此可得出三角形PEF的面积S与x的函数关系式.
解答:解:(1)能.以EF为直径作圆,圆与AC的交点就是P点,P点位置如图所示:
∴共有4个:①∠PEF=90°;②∠PFE=90°;③∠EPF=90°(两种);

(2)在矩形ABCD中
∵AB=3,BC=4,
∴AC=5.
∵S△ABC=•BC•AB,
∴S△ABC=6.
∵FC=x,
∴BF=4-x.
在△ABC中
∵EF∥AC,
∴△BEF∽△BAC.


∴S△BEF=6×=(x-4)2
∵PA=PC,EF∥AC,
∴S△AEP=S△CPF=FC•CP•sin∠ACB.
∵sin∠ACB=
∴S△AEP=×=x.
∴S△PEF=S△ABC-(S△BEF+S△AEP+S△CFP
=6-[(x-4)2+x+x]
=-x2+x(0<x<4).
点评:本题主要考查了矩形的性质、图形面积的求法以及二次函数的应用等知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、已知四边形ABCD是矩形,当补充条件
AB=AD
(用字母表示)时,就可以判定这个矩形是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知四边形ABCD是正方形,M、N分别是边BC、CD上的动点,正方形ABCD的边长为4cm.

(1)如图①,O是正方形ABCD对角线的交点,若OM⊥ON,求四边形MONC的面积;
(2)如图②,若∠MAN=45°,求△MCN的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知四边形ABCD是正方形,M、N分别是边BC,CD上的动点.
(1)如图①,设O是正方形ABCD对角线的交点,若OM⊥ON,求证:BM=CN,
(2)在(1)的条件下,若正方形ABCD的边长为4cm,求四边形MONC的面积;
(3)如图②,若∠MAN=45°试说明△MCN的周长等于正方形ABCD周长的一半.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知四边形ABCD是平行四边形,则下列结论中哪一个不满足平行四边形的性质(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知四边形ABCD是菱形,点E、F分别是边CD、AD的中点,若AE=3cm,那么CF=
3
3
cm.

查看答案和解析>>

同步练习册答案