精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系xOy中,直线y=k1x+b交x轴于点A(-3,0),交y轴于点B(0,2),并与的图象在第一象限交于点C,CD⊥x轴,垂足为D,OB是△ACD的中位线。

(1)求一次函数与反比例函数的解析式;
(2)若点是点C关于y轴的对称点,请求出△的面积。
解:(1)∵直线y=k1x+b交x轴于点A(-3,0),交y轴于点B(0,2),
,解得
∴一次函数的解析式为
∵OB是△ACD的中位线,OA=3,OB=2,∴OD=3,DC=4。
∴C(3,4)。
∵点C在双曲线上,∴
∴反比例函数的解析式为
(2)∵点是点C(3,4)关于y轴的对称点,∴(-3,4)。
。∴△的面积等于梯形减△

试题分析:(1)由直线y=k1x+b交x轴于点A(-3,0),交y轴于点B(0,2),用待定系数法即可求得一次函数的解析式;由OB是△ACD的中位线可得点C坐标,代入,即可求得反比例函数的解析式。
(2)由点是点C(3,4)关于y轴的对称点,根据关于y轴对称的点的坐标特征是纵坐标不变,横坐标互为相反数,得(-3,4),知,从而由求解。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,OA=OB,函数的图象与线段AB交于M点,且AM=BM.

(1)求点M的坐标;
(2)求直线AB的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线L经过点A(0,﹣1),且与双曲线c:交于点B(2,1).

(1)求双曲线c及直线L的解析式;
(2)已知P(a﹣1,a)在双曲线c上,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一次函数y=kx+b(k≠0)与反比例函数的图象在同一直角坐标系下的大致图象如图所示,则k、b的取值范围是
A.k>0,b>0B.k<0,b>0C.k<0,b<0D.k>0,b<0

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

(2013年四川泸州4分)如图,点P1(x1,y1),点P2(x2,y2),…,点Pn(xn,yn)在函数(x>0)的图象上,△P1OA1,△P2A1A2,△P3A2A3,…,△PnAn﹣1An都是等腰直角三角形,斜边OA1,A1A2,A2A3,…,An﹣1An都在x轴上(n是大于或等于2的正整数),则点P3的坐标是    ;点Pn的坐标是     (用含n的式子表示).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

函数y=x的图象与函数的图象在第一象限内交于点B,点C是函数在第一象限图象上的一个动点,当△OBC的面积为3时,点C的横坐标是   

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知梯形的面积一定,它的高为h,中位线的长为x,则h与x的函数关系大致是
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知反比例函数,当x<0时,y随x的增大而减小,则k的范围(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=x+b(b≠0)交坐标轴于A、B两点,交双曲线y=于点D,过D作两坐标轴的垂线DC、DE,连接OD.

(1)求证:AD平分∠CDE;
(2)对任意的实数b(b≠0),求证AD·BD为定值;
(3)是否存在直线AB,使得四边形OBCD为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案