精英家教网 > 初中数学 > 题目详情

如图,已知抛物线y=2x2-4xmx轴交于不同的两点AB,其顶点是C,点D是抛物线的对称轴与x轴的交点.

(1)求实数m的取值范围;

(2)求顶点C的坐标和线段AB的长度(用含有m的式子表示);

(3)若直线分别交x轴、y轴于点EF,问△BDC与△EOF是否有可能全等,如果可能,请证明;如果不可能,请说明理由.

答案:
解析:

  解:(1)∵抛物线y=2x2-4xmx轴交于不同的两个点,∴关于x的方程2x2-4xm=0有两个不相等的实数根.∴△=(-4)2-4·2m>0,∴m<2.

  (2)由y=2x2-4xm=2(x-1)2m-2,得顶点C的坐标是(1,m-2).由2x2-4xm=0,解得,x1=1+x2=1-

  ∴AB=(1+)-(1-)=

  (3)可能.

  证明:由yx+1分别交x轴、y轴于点EF,得E(-,0),F(0,1).∴OEOF=1.而BDDC=2-m.当OEBD,得,解得m=1.此时OFOC=1.

  又∵∠EOF=∠CDB=90°,∴△BDC≌△EOF.∴△BDC与△EOF有可能全等.


提示:

  本题是一元二次方程,二次函数与直线形的综合考查题,由图象可知,抛物线与x轴有两个交点,则△>0;求AB的长度可用简化公式

  (3)要求判断△BDC与△EOF是否有可能全等,即指探索全等的可能性,本题已有∠CDB=∠EOF=90°,BDOEOF都可能是对应边,证出其中一种情形成立即可,解题时要注意“有可能”这个关键词.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线y=x-ax+a-4a-4与x轴相交于点A和点B,与y轴相交于点D(0,8),直线DC平行于x轴,交抛物线于另一点C,动点P以每秒2个单位长度的速度从C点出发,沿C→D运动,同时,点Q以每秒1个单位长度的速度从点A出发,沿A→B运动,连接PQ、CB,设点P运动的时间为t秒.

(1)求a的值;

(2)当四边形ODPQ为矩形时,求这个矩形的面积;

(3)当四边形PQBC的面积等于14时,求t的值.

(4)当t为何值时,△PBQ是等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

(9分)如图,已知抛物线yx2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C.

(1)求抛物线的解析式;
(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,
求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形
为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年江苏省苏州市中考模拟数学卷 题型:解答题

(本题9分)如图,已知抛物线yax2bx+3的图象与x轴交于A、B两点,与y轴交于点C,且点C、D是抛物线上的一对对称点.

【小题1】(1)求抛物线的解析式;
【小题2】(2)求点D的坐标,并在图中画出直线BD;
【小题3】(3)求出直线BD的一次函数解析式,并根据图象回答:当x满足什么条件时,上述二次函数的值大于该一次函数的值.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年苏州工业园区九年级下学期学科调研数学卷 题型:解答题

(9分)如图,已知抛物线yx2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C.

(1)求抛物线的解析式;
(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,
求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形
为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年陕西省兴平市九年级上学期期末练习数学卷 题型:解答题

(本题满分10分)

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(—1,0)、C(0,—3)两点,与x轴交于另一点B.

1.(1)求这条抛物线所对应的函数关系式;

2.(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;

3.(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标.

 

 

查看答案和解析>>

同步练习册答案