精英家教网 > 初中数学 > 题目详情
4、如图,D,E分别是△ABC的边AC和BC的中点,已知DE=2,则AB=(  )
分析:根据三角形中位线定理三角形的中位线平行于第三边,并且等于第三边的一半可知,ED=$frac{1}{2}$BC,进而由DE的值求得AB.
解答:解:∵D,E分别是△ABC的边AC和BC的中点,
∴DE是△ABC的中位线,
∵DE=2,
∴AB=2DE=4.
故选D.
点评:本题主要考查三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,E、F分别是等腰△ABC的腰AB、AC的中点.用尺规在BC边上求作一点M,使四边形AEMF为菱形.
(不写作法,保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图:AB、AC分别是⊙O的直径和弦,D为弧AC上一点,DE⊥AB于点H,交⊙O于点E,交AC于点F.P为ED延长线上一点,连PC.
(1)若PC与⊙O相切,判断△PCF的形状,并证明.
(2)若D为弧AC的中点,且
BC
AB
=
3
5
,DH=8,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB和AC分别是⊙O的直径和弦,OD⊥AC于D点,若OA=4,∠A=30°,则BD等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,E、F分别是正方形ABCD边BC、AD上的点,且BE=DF
求证:(1)△ABE≌△CDF;
      (2)AE∥CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

桌上放着一个圆柱和一个长方体,如图(1),请说出下列三幅图(如图(2))分别是从哪个方向看到的.

查看答案和解析>>

同步练习册答案