精英家教网 > 初中数学 > 题目详情

【题目】八(1)班同学为了解2015年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,

月均用水量 (t)

频数(户)

频率

6

0.12

m

0.24

16

0.32

10

0.20

4

n

2

0.04

请解答以下问题:

(1)这里采用的调查方式是    (填“普查”或“抽样调查”),样本容量是    

(2)填空: 把频数分布直方图补充完整;

(3)若将月均用水量的频数绘成扇形统计图,则月均用水量“”的圆心角的度数是    

(4)若该小区有1000户家庭,求该小区月均用水量超过10t的家庭大约有多少户?

【答案】(1)抽样调查,50 (2)12,0.08 (3)72°4640

【解析】试题分析:(1)由调查了小区部分家庭可知是抽样调查,根据0<x≤5中频数为6,频率为0.12,则调查总户数为6÷0.12=50,则样本容量为50;

(2)用样本容量×根据5<x≤10中频率0.12即可得m,用4÷样本容量即可得n,根据m 的值以及16补全统计图即可;

(3)用0.2乘以360度即可得;

(4)根据样本数据中超过10t的家庭数,即可得出1000户家庭超过10t的家庭数.

试题解析:(1)由随机调查了该小区部分家庭可知这是抽样调查,

根据0<x≤5中频数为6,频率为0.12,则样本容量为:6÷0.12=50,

故答案为:抽样调查,50;

(2)m=50×0.24=12,n=4÷50=0.08,

故答案为:12,0.08,

图形如下:

(3)月均用水量“”的圆心角的度数是360°×0.2=72°,

故答案为:72°;

(4)1000×(0.32+0.20+0.08+0.04)=640户,

答:该小区月均用水量超过20t的家庭大约有640户.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点CD分别在两个半圆上(不与点AB重合),ADBD的长分别是关于x的方程0的两个实数根.

1)求m的值;

2)连接CD,试探索:ACBCCD三者之间的等量关系,并说明理由;

3)若CD,求ACBC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】通过类比联想、引申拓展研究典型题目可达到解一题知一类的目的.下面是一个案例.

原题如图①分别在正方形的边 连接试说明理由.

1思路梳理

因为所以把绕点逆时针旋转90°至可使 重合.因为所以共线.

根据 易证 .请证明.

2类比引申

如图②四边形 分别在边 .都不是直角则当满足等量关系时 仍然成立请证明.

3联想拓展

如图③ 均在边.猜想应满足的等量关系并写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图的方格中,每个小正方形的边长都为1,△ABC的顶点均在格点上.在建立平面直角坐标系后,点B的坐标为(﹣1,2).

(1)把△ABC向下平移8个单位后得到对应的△A1B1C1,画出△A1B1C1

(2)画出与△A1B1C1关于y轴对称的△A2B2C2

(3)若点P(a,b)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,写出P2的坐标为   

(4)试在y轴上找一点Q(在图中标出来),使得点Q到B2、C2两点的距离之和最小,并求出QB2+QC2的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD,CD的右侧,BE平分ABC,DE平分ADC,BE、DE所在直线交于点E,ADC=70°.

(1)EDC的度数;

(2)ABC=n°,BED的度数(用含n的代数式表示);

(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断BED的度数是否改变,若改变,求出它的度数(用含n的式子表示);若不改变,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,从①∠1=∠2 ②∠C=∠D ③∠A=∠F 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线y=2x-5与x轴和y轴分别交于点A和点B,点C(1,n)在直线AB上,点D在y轴的负半轴上,且CD=

(1)求点C、点D的坐标.

(2)若P为y轴上的点,当△PCD为等腰三角形时,求点P的坐标.

(3)若点M为x轴上一动点(点M不与点O重合),N为直线y=2x-5上一动点,是否存在点M、N,使得△AMN与△AOB全等?若存在,求出点N的坐标;若不存在,请说明理由.

图1 图2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(顶点是网格线的交点)

1)先将△ABC竖直向上平移5个单位,再水平向右平移4个单位得到△A1B1C1,请画出△A1B1C1

2)将△A1B1C1B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2

3)求线段B1C1变换到B1C2的过程中扫过区域的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,AD平分∠BACDEABE,则下列结论:①DECD;②AD平分∠CDE;③∠BAC=∠BDE;④BE+ACAB,其中正确的是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案