精英家教网 > 初中数学 > 题目详情
已知,在△ABC中,CA=CB,CA、CB的垂直平分线的交点O在AB上,M、N分别在直线AC、BC上,∠MON=∠A=45°
(1)如图1,若点M、N分别在边AC、BC上,求证:CN+MN=AM;
(2)如图2,若点M在边AC上,点N在BC边的延长线上,试猜想CN、MN、AM之间的数量关系,请写出你的结论(不要求证明).
分析:(1)连接CO,在线段AM上截取AQ=CN,连接OQ,由O为CA、CB的垂直平分线的交点,根据线段垂直平分线上的点到线段两端点的距离相等,得到OA=OB=OC,又AC=BC得到∠A=∠B=45°,再根据三线合一的性质得到CO与AB垂直且CO为顶角的平分线,由∠A和∠B求出∠ACB为直角,得到∠OCB也为45°,利用SAS得到三角形AOQ与三角形CON全等,根据全等三角形的对应边相等,对应角相等得到OQ=ON,∠AOQ=∠CON,等量代换得到∠QON为直角,又∠MON为45°,所以∠QOM也为45°,得两角相等,然后由OQ=ON,求出的两角相等,OM为公共边,利用SAS得到三角形OQM与三角形MON全等,根据全等三角形的对应边相等得到QM=MN,由AM=AQ+QM,等量代换即可得证;
(2)在CA的延长线上截取AQ=CN,同(1)利用两次全等即可得到QM=MN,由QM=AQ+AM,等量代换得证.
解答:
解:(1)连接OC,在AM上截取AQ=CN,连接OQ,
∵O为CA、CB的垂直平分线的交点,∴OC=OA=OB,
∵AC=BC,∴OC⊥AB,CO平分∠ACB,
∴∠A=∠B=45°,即∠ACB=90°,
∴∠OCN=45°,即∠OCN=∠A=45°,
在△AOQ和△CON中,
AQ=CN,∠A=∠OCN,OA=OC,
∴△AOQ≌△CON,
∴OQ=ON,∠AOQ=∠CON,
∵OC⊥AB,
∴∠AOC=∠AOQ+∠COQ=90°,
∴∠CON+∠COQ=90°,即∠QON=90°,
又∠MON=45°,∴∠QOM=45°,
在△QOM和△NOM中,
OQ=ON,∠MON=∠QOM,OM=OM,
∴△QOM≌△NOM,
∴QM=NM,
则AM=AQ+QM=CN+MN;
(2)MN=AM+CN.
点评:此题考查了全等三角形的判定与性质,线段的和、差、倍、分问题通常情况下先在较长的线段上截取一段与其中一条线段相等,然后构造全等三角形证明剩下的线段与另一条线段相等,本题的突破点是截取出AQ=CN,构造全等三角形,证明QM=NM.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、已知:在△ABC中AB=AC,点D在CB的延长线上.
求证:AD2-AB2=BD•CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网(1)化简:(a-
1
a
)÷
a2-2a+1
a

(2)已知:在△ABC中,AB=AC.
①设△ABC的周长为7,BC=y,AB=x(2≤x≤3).写出y关于x的函数关系式;
②如图,点D是线段BC上一点,连接AD,若∠B=∠BAD,求证:△BAC∽△BDA.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,已知,在△ABC中,∠ABC和∠ACB的平分线交于点M,ME∥AB交BC于点E,MF∥AC交BC于点F.求证:△MEF的周长等于BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

12、已知,在△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是
x>3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在△ABC中,∠B<∠C,AD平分∠BAC,AE⊥BC,垂足为点E.∠B=38°,∠C=70°.
①求∠DAE的度数;
②试写出∠DAE与∠B、∠C之间的一般等量关系式(只写结论)

查看答案和解析>>

同步练习册答案