精英家教网 > 初中数学 > 题目详情

【题目】操作与探究 探索:在如图1至图3中,ABC的面积为a

(1)如图1, 延长ABC的边BC到点D,使CD=BC,连结DA.若ACD的面积为S1,则S1=________(用含a的代数式表示);

(2)如图2,延长ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连结DE.若DEC的面积为S2,则S2= (用含a的代数式表示);

(3)在图2的基础上延长AB到点F,使BF=AB,连结FD,FE,得到DEF(如图3).若阴影部分的面积为S3,则S3=__________(用含a的代数式表示).

发现:像上面那样,将ABC各边均顺次延长一倍,连结所得端点,得到DEF(如图3),此时,我们称ABC向外扩展了一次.可以发现,扩展一次后得到的DEF的面积是原来ABC面积的_____倍.

【答案】(1)a;(2)2a;(3)6a;7.

【解析】(1)根据等底等高的三角形面积相等解答即可;(2)分别过A、E作BD的垂线,根据三角形中位线定理及三角形的面积公式求解即可;(3)由△BFD、△ECD及△AEF的边长为△ABC边长的一半,高与△AEF的高相等解答即可.


解:(1) ∵CD=BC, △ABC的面积为a, △ABC与△ACD的高相等,;
(2)分别过A、E作AG⊥BD,EF⊥BD,G、F为垂足,

则AG∥EF,∵A为CE的中点,,
∵BC=CD,;
(3) ∵△BDF的边长BD是△ABC边长BC的2倍,两三角形的两边互为另一三角形两边的延长线,,∵△ABC的面积为a,.同理可得,,,. ,,,

∴扩展一次后得到的△DEF的面积是原来△ABC面积的7倍.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点G在对角线BD不与点重合于点于点F,连结AG

写出线段长度之间的数量关系,并说明理由;

若正方形ABCD的边长为,求线段BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,点E、P在边AB上,且AE=BP,过点E、P作BC的平行线,分别交AC于点F、Q,记△AEF的面积为S1 , 四边形EFQP的面积为S2 , 四边形PQCB的面积为S3

(1)求证:EF+PQ=BC;
(2)若S1+S3=S2 , 求的值;
(3)若S3﹣S1=S2 , 直接写出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A(1,0)、B(0,-1)、C(-1,2)、D(2,-1)、E(4,2)五个点,抛物线y=a(x-1)2+k(a>0)经过其中的三个点.
(1)求证:C、E两点不可能同时在抛物线y=a(x-1)2+k(a>0)上;
(2)点A在抛物线y=a(x-1)2+k(a>0)上吗?为什么?
(3)求a和k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠A=104°-2,ABC=76°+2,BDCDD,EFCDF.

求证:∠1=2.请你完成下面证明过程.

证明:因为∠A=104°-2,ABC=76°+2,(

所以 A+ABC=104°-2+76°+2, ( 等式性质

A+ABC=180°

所以 ADBC,(

所以 1=DBC,(

因为 BDDC,EFDC,(

所以 BDC=90°,EFC=90°,( )

所以 BDC=EFC,

所以 BD ,(

所以 2=DBC,(

所以 1=2 ( ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合).BE的垂直平分线交AB于M,交DC于N.

(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;
(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场投入13 800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:

类别/单价

成本价

销售价(/)

24

36

33

48

(1)该商场购进甲、乙两种矿泉水各多少箱?

(2)全部售完500箱矿泉水,该商场共获得利润多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.

(1)求证:△BCE≌△DCF;

(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

AB在数轴上分别表示两个数abAB两点间的距离记为|AB|,O表示原点.当AB两点中有一点在原点时,不妨设点A为原点,如图1,则|AB|=|OB|=|b|=|a-b|;当AB两点都不在原点时,

①如图2,若点AB都在原点的右边时,|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;

②如图3,若点AB都在原点的左边时,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;

③如图4,若点AB在原点的两边时,|AB|=|OB|+|OA|=|b|+|a|=-b+a=|a-b|.

回答下列问题:

(1)综上所述,数轴上AB两点间的距离为|AB|=______.

(2)若数轴上的点A表示的数为3,点B表示的数为-4,则AB两点间的距离为______;

(3)若数轴上的点A表示的数为x,点B表示的数为-2,则|AB|=______,若|AB|=3,则x的值为______.

查看答案和解析>>

同步练习册答案