精英家教网 > 初中数学 > 题目详情
如图,BC是半圆的直径,O是圆心,P是BC延长线上一点,PA切半圆于点A,AD⊥BC于点D.
(1)若∠B=30°,问:AB与AP是否相等?请说明理由;
(2)求证:PD•PO=PC•PB;
(3)若BD:DC=4:1,且BC=10,求PC的长.

【答案】分析:(1)可根据度数来求,连接OA,根据切线的性质可得出OA⊥AP,根据圆周角定理可得出∠AOC=60°,因此∠P=∠BC=30°,由此得证.
(2)我们先看给出的比例关系,PC•PB恰好可以用切割线定理得出他们与PA2相等,那么我们再看PA2和PD•PO的关系,在直角三角形PAO中,根据三角形PAD和PAO相似,我们可得出PA2=PD•PO,那么就得出本题的结论.
(3)根据BD、DC的比例关系和BC的长,我们可得出BD和DC的长,也就求出了OD的长,要求出CP的长就要知道PB或PO的长,我们可参照(2)中的方法,用三角形OAD和OAP相似得出OA2=OD•OP从而求出PO的长,也就可以得出CP的长了.
解答:(1)解:相等.理由如下:
连接AO,
∵PA是半圆的切线,
∴∠OAP=90°
∵OA=OB,
∴∠B=∠OAB,
∴∠AOP=2∠B=60°,
∴∠APO=30°,
∴∠B=∠APO,
∴AB=AP.

(2)证明:在Rt△OAP中,
∵AD⊥OP,
∴PA2=PD•PO
∵PA是半圆的切线,
∴PA2=PC•PB,
∴PD•PO=PC•PB.

(3)解:∵BD:DC=4:1,且BC=10,
∴BD=8,CD=2,
∴OD=3
∵OA2=OD•OP,
∴25=3×OP,
∴OP=
∴PC=
点评:本题主要考查了切线的性质,切割线定理以及相似三角形的判定和性质等知识点,根据相似三角形得出线段间的比例关系是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图是某学校田径体育场一部分的示意图,第一条跑道每圈为400米,跑道分直道和弯道,直道为长相等的平行线段,弯道为同心的半圆型,弯道与直道相连接,已知直精英家教网道BC的长86.96米,跑道的宽为l米.(π=3.14,结果精确到0.01)
(1)求第一条跑道的弯道部分
AB
的半径.
(2)求一圈中第二条跑道比第一条跑道长多少米?
(3)若进行200米比赛,求第六道的起点F与圆心O的连线FO与OA的夹角∠FOA的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图是某学校田径体育场一部分的示意图,第一条跑道每圈为400米,跑道分直道和弯道,直道为长相等的平行线段,弯道为同心的半圆型,弯道与直道相连接,已知直道BC的长86.96米,跑道的宽为l米.(π=3.14,结果精确到0.01)
(1)求第一条跑道的弯道部分数学公式的半径.
(2)求一圈中第二条跑道比第一条跑道长多少米?
(3)若进行200米比赛,求第六道的起点F与圆心O的连线FO与OA的夹角∠FOA的度数.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《圆》(14)(解析版) 题型:解答题

(2002•潍坊)如图是某学校田径体育场一部分的示意图,第一条跑道每圈为400米,跑道分直道和弯道,直道为长相等的平行线段,弯道为同心的半圆型,弯道与直道相连接,已知直道BC的长86.96米,跑道的宽为l米.(π=3.14,结果精确到0.01)
(1)求第一条跑道的弯道部分的半径.
(2)求一圈中第二条跑道比第一条跑道长多少米?
(3)若进行200米比赛,求第六道的起点F与圆心O的连线FO与OA的夹角∠FOA的度数.

查看答案和解析>>

科目:初中数学 来源:2002年山东省潍坊市中考数学试卷(解析版) 题型:解答题

(2002•潍坊)如图是某学校田径体育场一部分的示意图,第一条跑道每圈为400米,跑道分直道和弯道,直道为长相等的平行线段,弯道为同心的半圆型,弯道与直道相连接,已知直道BC的长86.96米,跑道的宽为l米.(π=3.14,结果精确到0.01)
(1)求第一条跑道的弯道部分的半径.
(2)求一圈中第二条跑道比第一条跑道长多少米?
(3)若进行200米比赛,求第六道的起点F与圆心O的连线FO与OA的夹角∠FOA的度数.

查看答案和解析>>

同步练习册答案