分析 (1)作CH⊥AB于H.根据点A和B的坐标,得AB=6.根据等腰三角形的三线合一的性质,得AH=BH=3,再根据勾股定理求得CH=3$\sqrt{3}$,从而写出点C的坐标;
(2)根据三角形的面积公式进行计算.
解答 解:(1)作CH⊥AB于H
∵A(-4,0),B(2,0),
∴AB=6.
∵△ABC是等边三角形,
∴AH=BH=3.
根据勾股定理,得CH=3$\sqrt{3}$.
∴C(-1,3$\sqrt{3}\sqrt{3}$);
同理,当点C在第三象限时,C(-1,-3$\sqrt{3}$).
故C点坐标为:C(-1,3$\sqrt{3}$)或(-1,-3$\sqrt{3}$);
(2)S△ABC=$\frac{1}{2}$×6×3$\sqrt{3}$=9$\sqrt{3}$.
点评 此题综合运用了等边三角形的性质和勾股定理,熟练运用三角形的面积公式.x轴上两点间的距离等于两点的横坐标的差的绝对值.
科目:初中数学 来源: 题型:解答题
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增减 | -5 | +2 | +8 | -6 | +10 | +3 | -4 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{3}{2}$cm | B. | 3cm | C. | 5cm | D. | 6cm |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com