精英家教网 > 初中数学 > 题目详情

【题目】如图,AB//DE,AC//DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是( )

A. AB=DE B. EF=BC C. ∠B=∠E D. EF∥BC

【答案】B

【解析】

本题可以假设A、B、C、D选项成立,分别证明ABC≌△DEF,即可解题.

解:∵ABDE,ACDF,

∴∠A=D,

A、AB=DE,

ABCDEF中,

,

∴△ABC≌△DEF(SAS),故本选项错误;

B、AC=DF,

EF=BC,

无法证明ABC≌△DEF(ASS);故本选项正确;

C、B=E,

ABCDEF中,

,

∴△ABC≌△DEF(AAS),故本选项错误;

D、EFBC,ABDE,

∴∠B=E,

ABCDEF中,

,

∴△ABC≌△DEF(AAS),故本选项错误;

故选:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,有四张背面相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀后放在桌面上.

(1)小红从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;
(2)小明从这四张纸牌中随机摸出两张,用树状图或表格法,求摸出的两张牌面图形都是中心对称图形的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD,CD的右侧,BE平分ABC,DE平分ADC,BE、DE所在直线交于点E,ADC=70°.

(1)EDC的度数;

(2)ABC=n°,BED的度数(用含n的代数式表示);

(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断BED的度数是否改变,若改变,求出它的度数(用含n的式子表示);若不改变,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了应对金融危机,节俭开支,我区某康庄工程指挥部,要对某路段建设工程进行招标,从甲、乙两个工程队的投标书中得知:每天需支付甲队的工程款1.5万元,乙队的工程款1.1万元.甲、乙两个工程队实际施工方案如下

1)甲队单独完成这项工程刚好能够如期完成;

2)乙队单独完成这项工程要比规定的时间多用10天;

3)若甲、乙两队合作8天,余下的由乙队单独做也正好如期完成.

试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE∥BD,过点D作ED∥AC,两线相交于点E.

(1)求证:四边形AODE是菱形;
(2)连接BE,交AC于点F.若BE⊥ED于点E,求∠AOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,BC=ACACB=90°,点D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上,分别在点C的两侧截取与线段CD相等的线段CECF,连接AEBF

1)当点D在线段AB上时(点D不与点AB重合),如图1

①请你将图形补充完整;

②线段BFAD所在直线的位置关系为   ,线段BFAD的数量关系为   

2)当点D在线段AB的延长线上时,如图2

①请你将图形补充完整;

②在(1)中②问的结论是否仍然成立?如果成立请进行证明,如果不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB=4,E为BC的中点,F为AE的中点,过点F作GH⊥AE,分别交AB和CD于G,H,求GF的长,并求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一个长方形运动场被分隔成A,B,A,B,C共5个区,A区是边长为a m的正方形,C区是边长为c m的正方形.

(1)列式表示每个B区长方形场地的周长,并将式子化简;

(2)列式表示整个长方形运动场的周长,并将式子化简;

(3)如果a=40,c=10,求整个长方形运动场的面积.

查看答案和解析>>

同步练习册答案