精英家教网 > 初中数学 > 题目详情

如图,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O上,且∠BAC=∠CAD,过点C作CE⊥AD,垂足为E.
(1)试判断CE与⊙O的位置关系,并说明理由;
(2)若AB=10,AC=8,求CE.

解:(1)EC是⊙O的切线
证明:∵∠BAC=∠CAD,而∠ACB、∠E同为直角,
∴∠ECA=∠B;
∴EC是⊙O的切线.

(2)在Rt△ABC中,∠ACB=90°,
∵AB=10,AC=8,
∴BC=6,
∵∠CAE=∠BAC,
∠BCA=∠CEA=90°,
∴△ACB∽△AEC,
=
=
∴CE=4.8.
分析:(1)由于∠BAC=∠CAD,而∠ACB、∠E同为直角,可知:∠ECA=∠B,可知EC是⊙O的切线,由此得证.
(2)首先在Rt△ABC中,利用勾股定理求得BC的值,再利用三角形相似对应边比值相等,即可得解.
点评:此题主要考查的是切线的性质、弦切角定理以及解直角三角形的相关知识,难度不大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4.BD为⊙O的直径,则BD=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若AO=5,BC=8,∠ADB=90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,△ABC内接于⊙O,∠A=30°,若BC=4cm,则⊙O的直径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,AD⊥BC于点D,求证:∠BAD=∠CAO.

查看答案和解析>>

同步练习册答案