精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC,AD平分∠BACBC于点D,点FBA的延长线上,点E在线段CD上,EFAC相交于点G,AD∥EF.

(1)求证:∠BDA+CEG=180°

(2)若点HFE的延长线上,且∠F=H,则∠EDH与∠C相等吗,请说明理由.

【答案】(1)证明见解析;(2)相等,理由见解析.

【解析】

(1)根据平行线的性质和邻补角的定义结合已知条件分析解答即可;

(2)由AD平分∠BAC结合AD∥EF证得∠F=∠EGC,这样结合∠F=∠H即可得到∠H=∠EGC,由此证得AC∥DH即可得到∠EDG=∠C.

(1)ADEF

∴∠BDA=∠BEF,

又∵∠BEF+CEG=180°,

∴∠BDA+CEG=180°;

(2)∠EDH=∠C,理由如下:

∵AD平分∠BACBC于点D,

∴∠BAD=CAD

ADEF

∴∠BAD=FDAC=EGC

∴∠F=∠EGC

又∵∠H=F

∴∠H=∠EGC.

HDAC

∴∠EDH=C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商场为了吸引顾客,设计了一种促销活动.在一个不透明的箱子里放有4个完全相同的小球,球上分别标有“0元”、“10元”、“30元”和“50元”的字样.规定:顾客在本商场同一日内,消费每满300元,就可以从箱子里先后摸出两个球(每次只摸出一个球,第一次摸出后不放回).商场根据两个小球所标金额之和返还相应价格的购物券,可以重新在本商场消费.某顾客消费刚好满300元,则在本次消费中:
(1)该顾客至少可得元购物券,至多可得元购物券;
(2)请用画树状图或列表法,求出该顾客所获购物券的金额不低于50元的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:一粒米微不足道,平时在饭桌上总会毫不经意地掉下几粒,甚至有些挑食的同学把整碗米饭倒掉.针对这种浪费粮食现象,老师组织同学们进行了实际测算,称得粒大米约重克.

尝试解决:

粒米重约多少克?

按我国现有人口亿,每年天,每人每天三餐计算,若每人每餐节约粒大米,一年大约能节约大米多少千克?(结果用科学记数法表示)

假设我们把一年节约的大米卖成钱,按每千克元计算,可卖得人民币多少元?(结果用科学记数法表示,保留到

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y= 的图象上,若点A的坐标为(﹣2,﹣3),则k的值为( )

A.1
B.﹣5
C.4
D.1或﹣5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的顶点A、C分别在的正半轴上,点B的坐标为(3,4)一次函数的图象与边OC、AB分别交于点D、E,并且满足OD= BE.点M是线段DE上的一个动点.

(1)求b的值;

(2)连结OM,若三角形ODM的面积与四边形OAEM的面积之比为1:3,求点M的坐标;

(3)设点N是轴上方平面内的一点,以O、D、M、N为顶点的四边形是菱形,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们规定:有理数xA用数轴上点A表示,xA叫做点A在数轴上的坐标;有理数xB用数轴上点B表示,xB叫做点B在数轴上的坐标.|AB|表示数轴上的两点A,B之间的距离.

(1)借助数轴,完成下表:

xA

xB

xA﹣xB

|AB|

3

2

1

1

1

5

   

   

2

﹣3

   

   

﹣4

1

   

   

﹣5

﹣2

   

   

﹣3

﹣6

   

   

(2)观察(1)中的表格内容,猜想|AB|=   ;(用含xA,xB的式子表示,不用说理)

(3)已知点A在数轴上的坐标是﹣2,且|AB|=8,利用(2)中的结论求点B在数轴上的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为了解本校学生对球类运动的爱好情况,采用抽样的方法,从乒乓球、羽毛球、篮球和排球四个方面调查了若干名学生,在还没有绘制成功的“折线统计图”与“扇形统计图”中,请你根据已提供的部分信息解答下列问题.
(1)在这次调查活动中,一共调查了名学生,并请补全统计图.
(2)“羽毛球”所在的扇形的圆心角是度.
(3)若该校有学生1200名,估计爱好乒乓球运动的约有多少名学生?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10 cm,过点AAD∥BC,且点D在点A的右侧.点P从点A出发沿射线AD方向以每秒1cm的速度运动,同时点Q从点C出发沿射线CB方向以每秒2cm的速度运动,在线段QC上取点E,使得QE =2cm,连结PE,设点P的运动时间为t秒.

(1)①CE= 用含t的式子表示)

PE⊥BC,BQ的长;

(2)请问是否存在t的值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有两个不透明的乒乓球盒,甲盒中装有1个白球和2个红球,乙盒中装有2个白球和若干个红球,这些小球除颜色不同外,其余均相同.若从乙盒中随机摸出一个球,摸到红球的概率为
(1)求乙盒中红球的个数;
(2)若先从甲盒中随机摸出一个球,再从乙盒中随机摸出一个球,请用树形图或列表法求两次摸到不同颜色的球的概率.

查看答案和解析>>

同步练习册答案