精英家教网 > 初中数学 > 题目详情
将边长为8cm的正方形纸片ABCD沿EG折叠(折痕EG分别与AB、DC交于点E、G),使点B落在AD边上的点 F处,FN与DC交于点M,连接BF与EG交于点P.
(1)当点F与AD的中点重合时(如图1):
①△AEF的边AE=
 
cm,EF=
 
cm,线段EG与BF的大小关系是EG
 
BF;
(填“>”、“=”或“<”)
②求△FDM的周长. 
(2)当点F在AD边上除点A、D外的任意位置时(如图2):
③试问第(1)题中线段EG与BF的大小关系是否发生变化?请证明你的结论;
④当点F在何位置时,四边形AEGD的面积S最大?最大值是多少?精英家教网
分析:(1)①根据直角三角形勾股定理即可得出结论,②利用三角形相似对边比例关系计算出三角形各边长即可计算出结果,
(2)①根据题意,利用三角形全等即可证明结论,②根据勾股定理得出AE,然后利用全等三角形得出AF、AK,即可得出结果.
解答:精英家教网解:(1)①AE=3cm,EF=5cm;EG=BF,
设AE=x,则EF=8-x,AF=4,∠A=90°,42+x2=(8-x)2,x=3,
∴AE=3cm,EF=5cm,EG=BF,
②解:如图1,∵∠MFE=90°,
∴∠DFM+∠AFE=90°,
又∵∠A=∠D=90°,∠AFE=∠DMF,
∴△AEF∽△DFM,
EF
FM
=
AE
DF
=
AF
DM

又∵AE=3,AF=DF=4,EF=5,
5
FM
=
3
4
FM=
20
3
3
4
=
4
DM
DM=
16
3

∴△FMD的周长=4+
20
3
+
16
3
=16;

(2)①EG=BF不会发生变化,
理由:证明:如图2,∵B、F关于GE对称,
∴BF⊥EG于P,过G作GK⊥AB于K,
∴∠FBE=∠KGE,
在正方形ABCD中,GK=BC=AB,∠A=∠EKG=90°,
∴△AFB≌△KEG(AAS),
∴EG=BF,
②如图2,设AF=x,EF=8-AE,x2+AE2=(8-AE)2
∴AE=4-
1
16
x2

∵△AFB≌△KEG,
∴AF=EK=x,AK=AE+EK=AF+AE=4-
1
16
x2
+x,(10分)
S=
AE+DG
2
×8=0.5×8(AE+AK)=4×(4-
1
16
x2
+4-
1
16
x2
+x)=-
1
2
x2+4x+32

S=-
1
2
(x-4)2+40
,(0<x<8)
当x=4,即F与AD的中点重合时,S最大=40.(12分)
点评:本题主要考查旋转的性质以及全等三角形的判定和性质,需要注意的是:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN长是(  )
A、3cmB、4cmC、5cmD、6cm

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图所示,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC中点E处,点A落在F处,折痕为MN,则线段CN的长是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC边中点E处,点A落在点F处,折痕为MN,则线段CN的长度为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

某班甲、乙、丙三位同学进行了一次用正方形纸片折叠探究相关数学问题的课题学习活动.
活动情境:
如图2,将边长为8cm的正方形纸片ABCD沿EG折叠(折痕EG分别与AB、DC交于点E、G),使点B落在AD边上的点 F处,FN与DC交于点M处,连接BF与EG交于点P.
所得结论:
当点F与AD的中点重合时:(如图1)甲、乙、丙三位同学各得到如精英家教网下一个正确结论(或结果):
甲:△AEF的边AE=
 
cm,EF=
 
cm;
乙:△FDM的周长为16cm;
丙:EG=BF.
你的任务:
(1)填充甲同学所得结果中的数据;
(2)写出在乙同学所得结果的求解过程;
(3)当点F在AD边上除点A、D外的任何一处(如图2)时:
①试问乙同学的结果是否发生变化?请证明你的结论;
②丙同学的结论还成立吗?若不成立,请说明理由,若你认为成立,先证明EG=BF,再求出S(S为四边形AEGD的面积)与x(AF=x)的函数关系式,并问当x为何值时,S最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•邓州市一模)如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN=
3cm
3cm
,AM=
1cm
1cm

查看答案和解析>>

同步练习册答案