精英家教网 > 初中数学 > 题目详情
如图1,在平面直角坐标系中,以坐标原点O为圆心的⊙O的半径为
2
-1
,直线l:y=-x-
2
与坐标轴分别交于A、C两点,点B的坐标为(4,1),⊙B与x轴相切于点M.
(1)求点A的坐标及∠CAO的度数;
(2)⊙B以每秒1个单位长度的速度沿x轴负方向平移,同时,若直线l绕点A顺时针匀速旋转,当⊙B第一次与⊙O相切时,直线l也恰好与⊙B第一次相切,见图(2)求B1的坐标以及直线AC绕点A每秒旋转多少度?
(3)若直线l不动,⊙B沿x轴负方向平移过程中,能否与⊙O与直线l同时相切?若相切,说明理由.
(1)直线l:y=-x-
2

当x=0时,y=-
2
;当y=0,时,x=-
2

所以A(-
2
,0).
∵C(0,-
2
),
∴OA=OC,
∵OA⊥OC,
∴∠CAO=45°.

(2)如图,设⊙B平移t秒到⊙B1处与⊙O第一次相切,
此时,直线l旋转到l1恰好与⊙B1第一次相切于点P,⊙B1与x轴相切于点N,连接B1O,B1N.
则MN=t,OB1=
2
,B1N=1,B1N⊥AN.
∴ON=1,
∴MN=3,即t=3.
连接B1A,B1P,则B1P⊥AP,B1P=B1N,
∴∠PAB1=∠NAB1
∵OA=OB1=
2

∴∠AB1O=∠NAB1
∴∠PAB1=∠AB1O.
∴PAB1O.
在Rt△NOB1中,∠B1ON=45°,
∴∠PAN=45°,
∴∠1=90°.
∴直线AC绕点A平均每秒旋转90°÷3=30°.

(3)能,假设⊙B与⊙O第二次相切时⊙B的圆心为B2,作B2E⊥AC于E,作OH⊥AC于H.
∵△OAC为等腰直角三角形,且OA=OC=
2

∴根据勾股定理得到AC=2,
又∵OH⊥AC,
∴OH为斜边AC上的中线,
∴OH=
1
2
AC=1,
∴OH=B2E=1,
∵B2E⊥l,OH⊥l,
∴B2EOH,
故此时⊙B与圆0与直线l同时相切.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

半径分别是3cm和4cm的两圆外切,它们的外公切线长是(  )
A.5
2
cm
B.4
2
cm
C.5cmD.4
3
cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,CD是⊙O的直径,以D为圆心的圆与⊙O交于A、B两点,AB交CD于点E,CD交⊙D于P,已知PC=6,PE:ED=2:1,则AB的长为(  )
A.6
2
B.4
2
C.2
2
D.
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

写出一种与图中不同的圆和圆的位置关系:______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直角梯形ABCD中,ADBC,∠A=90°,∠C=60°,AD=3cm,BC=9cm.⊙O1的圆心O1从点A开始沿折线A-D-C以1cm/s的速度向点C运动,⊙O2的圆心O2从点B开始沿BA边以
3
cm/s的速度向点A运动,⊙O1半径为2cm,⊙O2的半径为4cm,若O1,O2分别从点A、点B同时出发,运动的时间为ts.
(1)设经过t秒,⊙O2与腰CD相切于点F,过点F画EF⊥DC,交AB于E,则EF=______;
(2)过E画EGBC,交DC于G,画GH⊥BC,垂足为H.则∠FEG=______;
(3)求此时t的值;
(4)在0<t≤3范围内,当t为何值时,⊙O1与⊙O2外切?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点A,B,C,D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,求∠OAD+∠OCD的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知正三角形的边长为a,那么它的内切圆与外接圆组成的圆环的面积S=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在正方形ABCD中,AB=4,0为对角线BD的中点,分别以OB,OD为直径作⊙O1,⊙02,则图中阴影部分的面积=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O中,C是弧AB上的一点,∠AOC=100°,则∠ABC的度数是(  )
A.80°B.100°C.120°D.130°

查看答案和解析>>

同步练习册答案