精英家教网 > 初中数学 > 题目详情

【题目】下列计算正确的是(  )
A.a5+a5=a10
B.﹣a6(﹣a)4=a10
C.(﹣bc)4÷(﹣bc)2=b2c2
D.(﹣ab)2a=﹣a3b2

【答案】C
【解析】解:A、原式=2a5 , 错误;
B、原式=﹣a10 , 错误;
C、原式=b2c2 , 正确;
D、原式=a3b2 , 错误,
故选C
A、原式合并同类项得到结果,即可做出判断;
B、原式利用幂的乘方及单项式乘以单项式法则计算得到结果,即可做出判断;
C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;
D、原式利用积的乘方运算法则计算得到结果,即可做出判断.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD的对角线AC,BD交于点O,△AOD是正三角形,AD=4,则平行四边形ABCD的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】①如图1:A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,可使所修的渠道最短,试在图中确定该点的位置(保留作图痕迹).
②如图2:某地有两个工厂M、N和两条相交叉的公路a,b现计划修建一座物资仓库,希望仓库到两个工厂的距离相等,到两条公路的距离也相等.你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分解因式:2x3﹣8x=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,△ABC的面积是28cm2 , AB=16cm,AC=12cm,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列运算正确的是(  )

A.3a+2a=5a2
B.a2a3=a6
C.(a+b)(a﹣b)=a2﹣b2
D.(a+b)2=a2+b2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知直线PQ∥MN,点A在直线PQ上,点C、D在直线MN上,连接AC、AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE与CE相交于E.
(1)求∠AEC的度数;
(2)若将图1中的线段AD沿MN向右平移到A1D1如图2所示位置,此时A1E平分∠AA1D1 , CE平分∠ACD1 , A1E与CE相交于E,∠PAC=50°,∠A1D1C=30°,求∠A1EC的度数.
(3)若将图1中的线段AD沿MN向左平移到A1D1如图3所示位置,其他条件与(2)相同,求此时∠A1EC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题正确的是( .

A.等弧对等弦;B.在同圆中,相等的弦所对的圆周角相等;

C.平分弦的直径垂直于弦;D.经过切点的直线是圆的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设平面内一点到等边三角形中心的距离为d,等边三角形的内切圆半径为r,外接圆半径为R .对于一个点与等边三角形,给出如下定义:满足rdR的点叫做等边三角形的中心关联点.在平面直角坐标系xOy中,等边△ABC的三个顶点的坐标分别为A(0,2),B(﹣,﹣1),C(,﹣1).

(1)已知点D(2,2),E,1),F,﹣1).在DEF中,是等边△ABC的中心关联点的是

(2)如图1,过点A作直线交x轴正半轴于M,使∠AMO=30°.

①若线段AM上存在等边△ABC的中心关联点Pmn),求m的取值范围;

②将直线AM向下平移得到直线y=kx+b,当b满足什么条件时,直线y=kx+b总存在等边△ABC的中心关联点;(直接写出答案,不需过程)

(3)如图2,点Q为直线y=﹣1上一动点,⊙Q的半径为.当Q从点(﹣4,﹣1)出发,以每秒1个单位的速度向右移动,运动时间为t秒.是否存在某一时刻t,使得⊙Q上所有点都是等边△ABC的中心关联点?如果存在,请直接写出所有符合题意的t的值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案